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Networks and Cities: An Information Perspective
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Traffic is constrained by the information involved in locating the receiver and the physical distance
between sender and receiver. We here focus on the former, and investigate traffic in the perspective of
information handling. We replot the road map of cities in terms of the information needed to locate
specific addresses and create information city networks with roads mapped to nodes and intersections to
links between nodes. These networks have the broad degree distribution found in many other complex
networks. The mapping to an information city network makes it possible to quantify the information

associated with locating specific addresses.

DOI: 10.1103/PhysRevLett.94.028701

Traffic and communication among different parts of a
complex system are fundamental elements in maintaining
its overall cooperation. Because a complex system consists
of many different parts, it matters where signals are trans-
mitted. Thus signaling and traffic is in principle specific,
with each message going from a unique sender to a specific
recipient. One example is living cells, where macromole-
cules are transported between cellular components and
along microtubular highways to perform or direct actions
on other particular macromolecules [1]. This complicated
cellular machinery is often simplified to a molecular net-
work that maps out the signaling pathways in the system.
We here will consider a city in a similar perspective, with
communication defined by people that travel from one
specific street to another. In many cases, the actual travel-
ing distance could easily be less restrictive for communi-
cation than the amount of information needed to locate the
correct address. In this work we will take this perspective
to the extreme, and assume that the travel time/cost of just
driving along a given road is zero. Accordingly we remap a
city map to a dual information representation [2]: an
information city network (Fig. 1). Subsequently we will
use this network to estimate the information needed to
navigate in a city, and thereby quantify and compare the
complexity of cities.

Imagine that you want to get to a specific street in the
city you are living in. If you have lived in the city for some
time, you probably know how to find the street, and driving
to the destination does not cost any new information.
However, if you are new in the city, you need travel
directions along the way to the target. In this Letter we
discuss the information value of such travel directions, or
equivalently, we quantify the information associated with
knowing the city you live in.

Assume that you get your travel directions in the form of
the sequence of roads that will lead you to the target road.
These roads form a path of roads with subsequent inter-
sections. In network language, your trajectory can be
mapped to a path in an “information city network”, where
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roads map to nodes and intersections between roads map to
links between the nodes. This network represents an infor-
mation view of the city, where distances along each road
are effectively set to zero because it does not demand any
information handling to drive between the crossroads.

In Fig. 1(a) and 1(b) we present two simple examples of
two caricature cities mapped to such information networks.
Figure 1(a) shows a particular simple city consisting of a
main road, that together with a collection of smaller roads
define the city. This maps into a single hub, where all
information handling consists in specifying which of the
four side roads is the right one. In Fig. 1(b) we show a
slightly more elaborate city, that resembles modern
planned cities. In that case any street can be accessed
from a random perpendicular street, and effectively the
information associated to locate a specific street is also
small.

In Fig. 1(c) we show a part of a real city, “Gamla stan™
in Stockholm [3], Sweden, mapped to an information net-
work. Long roads with many intersections are mapped to
major hubs: The network representation nicely captures
that the long roads are important for the overall traffic in
the system. For a more systematic study we map a number
of different cities to their information network counterpart,
and examine their basic topological properties (Fig. 2). For
comparison we also show another transportation network,
consisting of airports in USA, connected by a link in case
there is a direct flight between them [4]. In this network,
the travel directions are decided in the airports and we
therefore analyze it with the airports as nodes and the
flights between airports as links.

For all city networks, and also for the airport network,
we observe broad connectivity distributions [Fig. 2(a).
However, the local properties differ qualitatively between
the city networks and the airport network. We quantify the
locality by the number of small loops of length three
(triangles A), related to clustering [5-7], and length four
(squares [J) in Fig. 2(b) and 2(c) normalized by their
expectation number in random networks with conserved
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FIG. 1 (color). Mapping cities (left panels) into information
networks (right panels). In (a) we show how a city consisting of
one major street and four smaller streets maps to a single hub.
This network represents the information handling you perform
when you orient in such a city. On the major road 1 you need to
know which of the exits 2-5 to take to get to the correct street:
this corresponds to an information of log,(4) = 2 bits. In (b) we
show the city map of a very planned city, where each street
intersects with many perpendicular streets. For example, it is
very easy to go from any ns street to another parallel ns street. A
perpendicular east-west street is first reached with probability
1/4. Next a ns is reached with probability 1/3, if by assumption
a just visited street is not visited again. There are four possible
paths to the target street and therefore one only needs
—log, (44 3) = log,(3) bits of information to go between two
parallel streets (see Eq. (4)). In (c) we map Gamla stan in
Stockholm, Sweden, to an information city network. Nodes are
roughly positioned at the geographical position of the corre-
sponding street and color coded according to the typical amount
of information JH{ needed to locate them.

degree distribution [8,9]. The airport network is close to its
random counterpart, whereas the city networks differ sub-
stantially from their random expectations. The airports are
connected with little regards to geographical distance,
whereas in the cities, in particular, the short roads have
relatively many loops and thus exhibit a substantial degree
of locality. Manhattan, selected to represent a planned city,
differs from the other cities in having few triangles and an
overabundance of squares associated especially to the
many streets of connectivity ~15 and ~100 that, respec-
tively, cross the city in east-west and north-south direction.

To characterize the ease or difficulty of navigation in
different networks, we use the ‘‘search information” S
[10]. Imagine a network, in this case an information city
network, where we start on a node s (a street) and want to
locate node ¢ (another street) somewhere else in a con-
nected network with N nodes (streets). Further, we want to
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FIG. 2 (color online). Characterizing traffic networks in terms
of degree distribution (a), and number of short loops (b) and (c).
P,(>k) is the probability that a node has degree k or higher.
Hence, it is the cumulative degree distribution that is plotted in
(a). In (b) we show number of loops of length 3, A, that nodes of
degree k participate in, normalized by what this number of loops
would be in a randomized version of the network, A,, with 100
realizations. The random network is constructed such that the
degree of every node is conserved, and such that the network
remains globally connected [8]. (c) shows the similarly normal-
ized number of loops of length 4, (1. Both types of loops tend to
be over-represented in real city networks compared to the
randomized ones. This reflects locality in the city networks.

locate ¢ through the shortest path, or if there are several
degenerate shortest paths, we want to locate ¢ through any
of them. Without prior knowledge, the information needed
for locating a given exit from a node of connectivity k, is
log, (k). For each path p(s, 1) from s to ¢ the probability to
follow it is
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with j counting all nodes on the path until the last node
before the target 7 is reached. The factor k; — 1 instead of
k; takes into account the information gained by following
the path, and therefore reducing the number of exit links by
one. Thus, the total probability to locate node ¢ along any
of the degenerate shortest paths is

P(s— 1) = > Plp(s 1] )
{p(s.0}

where the sum runs over all degenerate paths that connect s
and ¢. The total information value of knowing any one of
the degenerate paths between s and ¢ is therefore

S(s = 1) = —log, > Plp(s. 1)l 3)
{p(s,0}
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We immediately see that the existence of many degenerate
shortest paths makes it easier to find z. We stress that S
should not be confused with entropy measures associated
to the degree distribution [11], or measures related to the
dominating eigenvector of the adjacency matrix [12].
Instead S is related to specific traffic in the system.

Let us for illustration return to the ‘“‘square city’” in
Fig. 1(b), with N streets divided in N/2 north-south (ns)
streets, and N /2 east-west (ew) streets. Going from any ns
street to a particular ew street demands information about
which of the N/2 exits we must take. This information is
S(ns — ew) = log,(N/2). On the other hand, if we want to
go from 1 ns street to another ns street, we can take any one
of the N/2 ew streets. Each path is thus assigned a proba-
bility (2/N)[1/(N/2 — 1)]. But there are in fact N/2 de-
generate paths, and the total information cost for locating
parallel roads in this square city reduces to

1 1

2 NJZN/2 = ) log,(N/2 — 1),

“)

reflecting the fact that it does not matter which of the ew
roads one will use to reach the target road.

To characterize the overall complexity in finding streets
we calculate the average search information

1 N N
=3 D> S, 1), (5)
s=11t=1

for a number of cities in Fig. 3. To evaluate the S values, we
also calculate for each network the corresponding S, for its
randomized version. This random network is constructed
such that the degree of each node is the same as in original
network, and also such that the overall network remains
connected [8]. Thus, comparing S with S, properly takes
into account both the size of the network, its total number
of links as well as the degree distribution, but not the
geometrical constraints. The two-dimensional constraint
of a real city is absent in the randomization. In all cases,
including the airline network, we observe that S > S,.
Thus all networks are more difficult to navigate than their
random counterpart [Fig. 3(a)].

To take size effects into account we from Eq. (4) expect
that S scales as logy(N). We therefore define o =
S/log,(N) to be able to compare cities of different sizes
[Fig. 3(b)]. Furthermore, 8 = (S — S,)/log,(N) is interest-
ing, since it measures how effectively the city is con-
structed given the length (degree) of the streets
[Fig. 3(b)]. According to Fig. 3(b) Manhattan is relatively
easier to navigate in than the other cities. However, neither
is Manhattan optimized. If Manhattan were constructed as
a pure square city [Fig. 1(b)] the search information would
be S ~ 9 according to Eq. (4).

To investigate what it is that makes it complicated to
navigate in cities, we in Fig. 4 measure the information
associated to nodes of different degrees in the network. We

S(ns — ns) = —logz(
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FIG. 3 (color online). (a) shows the average information one
needs to go from one specific street to another specific street for
some city networks [3], and for the network of airports in USA
connected by commercial airlines [4]. (N, L) is, respectively, the
number of nodes and links in the networks. In all cases we
compare with the random counterpart of the network as de-
scribed in the caption of Fig. 2. Overall we observe that
Manbhattan is more efficiently organized than the similar sized
Umed, but that both are relatively hard to navigate in compared
with the US airport network. (b) shows the size-weighted search
information o together with 8, the corresponding difference with
the randomized network.

define the access information of a node s by
1
s = NZS(& 0, (6)

where we sum over all target nodes ¢ in the network. The
quantity A, measures the average number of questions
one needs to locate a specific street in the network, starting
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FIG. 4 (color online). (a) shows the real-random access ratio
(A(k))/{A,k)) and (b) shows the real-random hide ratio
(FH (k))/(FH ,(k)). Overall they show similar qualitative behav-
ior. Overall (a) and (b) show that the degree of a node plays a
minor role for access A and hide HH .
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from node s. Thus A  is a measure of how good the access
to the network is from node s. In Fig. 4(a) we show
(A(k))/(A,(k)) averaged over all nodes of degree k
versus k. (A ,(k)) is the average expectation of A (k) in
a randomized network. Note that H, =13 S(s, 1) #
A, =+3,5(s). The difference reflects the asymmetry
of the endpoints of a path. Imagine a small network that
consists of a hub with five neighbors. The hub is easily
reached from any of the neighbors. However, starting at the
hub it is harder to reach a specific neighbor. The hub has
low HH and high A and the neighbors have high /{ and
low A.

The overall feature of Fig. 4(a) and 4(b) is that the
positioning of the roads with respect to their degree does
not explain the relatively high values of H and A.
However, the degree plays another indirect role: The pres-
ence of long roads shortens the distances in the information
network and thereby decreases S, especially if degenerate
paths exist. This is true for Manhattan and the network of
airports, but not for the three Swedish cities according to
their degree distributions [Fig. 2(a)]. In the context of city
planning, this suggests that for easy navigation it is often
favorable to replace a big number of shorter streets with a
few long, provided that they connect remote parts of the
network.

When considering  AS(I) = (S(1))pairs — €S (D)pairs S
function of distances [/ between nodes in the city network
[13] (not shown), we find that AS(/) <O for distances
[ ~ 2. This suggests that local navigation to a neighbor
parallel road is optimized, whereas the AS(/) > 0 for [ > 3
reflects a tendency to protect local neighborhoods by hid-
ing them. Thus the relatively large S reflects a separation of
these neighborhoods.

We also investigated the variance of A (k) and H (k)
and found that this typically is much larger in real net-
works, compared to their random counterparts. This re-
flects the inhomogeneity in the organization of cities
[Fig. 2(b) and 2(c)] with a fraction of streets being well
hidden in remote corners of the cities. Such corners and
local “islands”, over-represented in Stockholm as a con-
sequence of real islands, are essentially never present in the
random counterparts. Many cities are organized hierarch-
ical, where a few main streets connect to smaller streets,
which in turn connects to even smaller streets. If a real city
were organized purely hierarchically, with each street con-
nected to one larger and two smaller streets, then § =
2log,(N) for N — oo. In practice this hierarchical organi-
zation is partially broken by intersecting roads (decreasing
S, e.g., Manhattan) and local neighborhoods or islands
(increasing S, e.g., Stockholm). As a consequence S =
2log,(N) is only a rough estimate. Finally, we have mea-
sured that locality in the form of an excess number of small

loops [Fig. 2(b) and 2(c)] also contributes to S — §,, since
small loops introduce redundant paths without shortening
distances substantially.

We have discussed the organization of cities in the
perspective of communication and presented a way to
remap a city map to a dual information representation.
The information representation of a city opens for a way
to quantify the value of knowing it: A large S means that
you have to know a lot to find your way around in a city as a
newcomer. In another perspective it is an estimate of the
asymmetry between traveling a way the first and second
time, when travel time is included.

We have quantified the intuitive expectation that
Manhattan, and presumably most modern planned cities,
are simple. In contrast, historical cities with a complicated
past of cut and paste construction are more complex. The
observation of a universally large S relatively to S, in all
networks we have investigated means that the ability to
obtain information is relatively more important in these
real world networks. Also it implies that city networks are
not optimized for communication, as such an optimization
would provide a topology with S even smaller than S,
[Fig. 1(b)]. Rather the topologies of real cities, with high
S, reflect a local tendency to avoid being exposed to non-
specific traffic.
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