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Half-Filled Lowest Landau Level on a Thin Torus
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We solve a model that describes an interacting electron gas in the half-filled lowest Landau level on a
thin torus, with radius of the order of the magnetic length. The low-energy sector consists of non-
interacting, one-dimensional, neutral fermions. The ground state, which is homogeneous, is the Fermi sea
obtained by filling the negative energy states, and the excited states are gapless neutral excitations out of
this one-dimensional sea. Although the limit considered is extreme, the solution has a striking resem-
blance to the composite fermion description of the bulk � � 1=2 state—the ground state is homogeneous
and the excitations are neutral and gapless. This suggests a one-dimensional Luttinger liquid description,
with possible observable effects in transport experiments, of the bulk state where it develops continuously
from the state on a thin torus as the radius increases.
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FIG. 1. Phase diagram for � � 1=2 on a torus, where one
circumference, L1, varies while the other is infinite. For a thin
torus, L1 � 5 magnetic lengths, the � � 1=2 system is that of
noninteracting neutral one-dimensional fermions (dipoles). The
question mark indicates whether the state develops continuously
into the bulk � � 1=2 state or whether there is a phase transition.
Based on the similarities of the state at short L1 and the bulk
state, such as a homogeneous ground state and neutral gapless
excitations, we conjecture that there is no phase transition. This
suggests a one-dimensional description of the bulk � � 1=2 state
as a Luttinger liquid rather than as a free two-dimensional Fermi
gas. (For very short L1 a crystalline state determined by elec-
trostatics alone is obtained.)
It was observed by Jiang et al. in 1989 that the quantum
Hall (QH) system has a metallic behavior at filling fraction
� � 1=2—�xx is finite and sample dependent as T ! 0,
whereas �xy is unquantized and approximately equal to its
classical value [1]. Early experiments also showed that
there is a large density of low-energy states [2], but no
nonlocal transport [3].

The metallic � � 1=2 state was successfully described
by Halperin, Lee, and Read [4], who introduced a mean
field theory where the external magnetic field is cancelled
by a smeared out statistical field, resulting in composite
fermions [5] moving in a zero field—i.e., in a two-
dimensional free fermion gas with a Fermi surface. This
picture, as well as Jain’s general concept of composite
fermions, was spectacularly confirmed by surface acoustic
wave experiments performed by Willett et al. [6], and by
ballistic transport [7], which showed that particles move in
a reduced effective magnetic field (or, alternatively, have a
reduced charge) which approaches zero as �! 1=2.

Rezayi and Read [8] proposed a microscopic wave
function for the � � 1=2 state, which agrees very well
with exact results for small systems. The theory for the � �
1=2 state was later further developed by several groups [9],
and a description in terms of neutral dipoles was proposed.

In spite of the impressive agreement between theory and
experiment there are, in our opinion, important questions
regarding the physics in the lowest Landau level that
remain to be answered. There is no real understanding of
why the strongly correlated electron system in the lowest
Landau level, at various filling fractions, becomes a system
of weakly interacting composite fermions—no controlled
microscopic derivation of the mean field theory at � � 1=2
or, for that matter, of the composite fermion descriptions at
other filling fractions exists.

Here we study the interacting electron gas in the lowest
Landau level at � � 1=2 on a thin torus. We obtain an exact
solution for a particular short-range electron-electron in-
teraction that is relevant for a torus with circumference L1

of the order of the magnetic length. The low-energy sector
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consists of free neutral one-dimensional fermions.
Expressed in terms of the original electrons, these ‘‘com-
posite fermions’’ are nearest neighbor electron-hole pairs,
excitons, with a hard-core constraint. This thus provides a
dipole picture of the � � 1=2 state. The ground state is a
homogeneous Fermi sea of the neutral fermions, which
supports gapless neutral excitations.

The low-energy sector has many features in common
with the bulk � � 1=2 state, such as a homogeneous
ground state and gapless neutral excitations, and we con-
jecture that it develops continuously into the bulk state as
L1 ! 1, rather than being separated from this by a phase
transition, see Fig. 1. This suggests a one-dimensional
description of the bulk � � 1=2 state as a Luttinger liquid
rather than as a two-dimensional Fermi gas [10].

We start by mapping the problem onto a one-
dimensional lattice model. Following Haldane and
Rezayi we consider an electron confined to the lowest
Landau level on a torus with lengths L1; L2 in the x and
y directions, respectively [11]. In Landau gauge,
~A � �Byx̂, the magnetic translation operators become
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T1 � e�L1=Ns�@x ; T2 � e�L2=Ns��@y�ix�; (1)

where Ns is the number of flux quanta through the surface
of the torus. (The magnetic length is set to 1, ‘ ���������������
�hc=eB

p
� 1.) These operators commute with the

Hamiltonian for the charged particle coupled to ~A. Wave
functions are required to be periodic up to a phase,
TNs� � � ei���, � � 1; 2, leading to L1L2 � 2�Ns and
T1T2 � e2�i=NsT2T1. With  0 �

P
ne
inL2xe��y�nL2�

2=2, we
obtain the T1 eigenstates  m � Tm2  0, T1 m �

ei2�m=Ns m, m � 0; 1; . . .Ns � 1. The states  m span the
lowest Landau level and are located along the lines y �
�2�m=L1. Thus we have obtained the mapping onto a
one-dimensional lattice model, where m numbers the sites
and the lattice constant is 2�=L1.

Assuming translation invariance, the electron-electron
interaction Hamiltonian becomes

Hee �
X
n

X
k>m

Vkmc
y
n�mc

y
n�kcn�m�kcn; (2)

where cym creates an electron in state  m and Vkm �
Vk;�m 
 0. To understand the physics of the interaction it
is useful to divide Hee into two parts: Vp0, the electrostatic
repulsion between two electrons separated p lattice con-
stants, and Vm�p;m, the amplitude for two particles sepa-
rated a distance p to hop symmetrically to a separation
p� 2m and vice versa. For a short-range real space
electron-electron interaction of the form V� ~r� � r2 �~r�
one finds Vkm � �k2 �m2�e�2�2�k2�m2�=L2

1 [12]. When the
torus becomes thin, i.e., when L1 decreases, the distance
2�=L1 between the single particle states increases, hence
fewer terms in (2) contribute. For the r2 interaction one
finds that the range of the interaction is of the order of six
magnetic lengths.

We consider the electron gas at filling fraction � � 1=k,
where k is an integer, and assume that the number of
electrons �Ns is an integer. The many particle states can
be chosen as T1 eigenstates with momentum !mod�Ns� (in
units of 2�=Ns). T2 translates the system in the y direction
and changes ! by �Ns—i.e., by the number of particles.
Since T2 commutes with the Hamiltonian, all energy ei-
genstates are k-fold degenerate [11]. (Tk2 preserves !
mod�Ns� and hence can be diagonalized along with T1.)

At a fixed filling fraction, the electrostatic repulsion
strives to keep the particles apart, whereas the hopping
terms favor maximally hoppable states. To find the low-
energy states is in general a very complicated problem.
However, at � � 1=2, the short-range electrostatic and
hopping terms cooperate, leading to a simple low-energy
sector for the thin torus.

We truncate the interaction in (2) and keep only the two
shortest range electrostatic terms and the shortest range
hopping term
02680
H �
X
n

�V10n̂nn̂n�1 � V20n̂nn̂n�2

� V21�c
y
ncn�1cn�2c

y
n�3 � H:c:�
; (3)

where n̂k � cyk ck. This provides a good approximation of
the interaction on a thin torus as discussed below [13].

Before giving the details of our analysis we outline the
logic of the identification of the low-energy sector of the
Hamiltonian (3) at � � 1=2. The crucial part in (3) is the
hopping term V21. We define a subspace H 0 of the full
Hilbert space by requiring each pair of sites �2p� 1; 2p� to
have charge one. Acting with T2 gives an equivalent group-
ing of the sites �2p; 2p� 1� instead—and a corresponding
subspace H 0

T [14]. H 0 (and H 0
T

) is the low-energy
sector under fairly general conditions since it contains
the maximally hoppable state j100110011001 . . .i—which
turns out to be the seed for the ground state and is also the
lowest energy state for the V20 term—and it has a low
electrostatic energy by construction. H preserves the sub-
space H 0 and the hopping term can be exactly diagonal-
ized in this space giving noninteracting neutral fermions.
The ground state is the one-dimensional Fermi line ob-
tained by filling the negative energy states, and the excita-
tions are gapless excitations out of this Fermi sea. The
electrostatic terms in (3) are less crucial. At V10 � 2V20 all
states in H 0 have the lowest possible electrostatic energy
and we argue perturbatively that H 0 is the low-energy
sector. However, we expect this to be true under more
general conditions.

We now present our analysis for the truncated
Hamiltonian (3) at � � 1=2 and V10 � 2V20 � 2�. The
electrostatic part, HjV21�0, then has the eigenstates
jn1n2 . . . nNsi, where ni � 0; 1 and j1i � cyj0i, with ener-
gies

E0 � �
�
Ns
2

� n111 � n000

�
: (4)

Here, n111�n000� is the number of 3-strings, i.e., strings
consisting of three nearby electrons (holes) in
n1n2 . . . nNs (a string of length k 
 3 is counted as k� 2
strings and periodic boundary conditions are assumed).
Thus there is a degenerate ground state manifold H 0

consisting of all states where at most two electrons or
two holes are next to each other. Note that H 0 � H 0.
The excitations are 3-strings of either electrons or holes
and each 3-string has energy �. The statement about H 0

follows by induction if the states without 3-strings for Ns
sites are constructed by inserting an electron and a hole in
Ns � 2 states without 3-strings. The energy of a 3-string
follows by considering the change in energy of one or
several 3-strings when moving one constituent.

To diagonalize H in H 0, we proceed as follows. There
are two possible states for a pair of sites in H 0: j #i � j01i
and j "i � j10i, and it is natural to introduce the spin
raising operator s�p � cy2p�1c2p, j "i � s�j #i. On states
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in H 0, s�; s� � �s��y describe hard-core bosons—they
commute on different sites but anticommute on the
same site and H is the nearest neighbor spin-1=2 XY
chain. Expressing the bosons in terms of fermions d
using the Jordan-Wigner transformation, s�p � Kpdp,

where Kp � ei�
P

p�1
j�1

dyj dj , the Hamiltonian (3) is simply

that of free fermions, H � �Ns
2 � V21�

PNs=2�1
p�1 dyp�1dp �

dy1KNs=2dNs=2 � H:c:
, when restricted to H 0 [15]. Thus,
after a Fourier transformation, the ground state is obtained
by filling all the negative energy states. This state has
energy E � �

2 �
V21

� per site (if Ns ! 1) and supports
neutral gapless excitations. One readily finds that hcymcni �
1
2 mn, and hence the state is homogeneous.

This solves the problem in H 0 and, by action of T2, in
H 0

T
. It remains to consider the states in the ground state

manifold H 0 that are in neither of these subspaces. We
will now argue that these are separated from the ground
state by a gap of order V21 generated by the hopping term in
H. Intuitively, this makes sense since H 0 contains the
maximally hoppable state j01100110011 . . . 110i. Note
that whereas H 0 is invariant under H, other states in
H 0 may mix with states not in the ground state manifold.
Our procedure will be to simply diagonalize H in the
ground state manifold H 0.

To describe a general state in H 0, we introduce the
notation jai � j00i and jbi � j11i, along with j #i and j "i,
for the states on sites �2p� 1; 2p�.H contains the hopping
terms: "#$#" , # a "$ aba, " b #$ bab, " ba$ ba " , and
# ab$ ab #—all with strength V21. A general state is
uniquely described by a string of "; #; a and b and can be
characterized by the number d of alternating H 0 and H 0

T

domains of which it is built up. Any pair "# or #" belongs to
H 0 and any a or b belongs to H 0

T
—a polarized string

"""" . . . or #### . . . can, however, belong to either domain.
This implies that there is a domain wall in between "# (or
#" ) and a (or b)—counting the number of domain walls
gives d for a general state.

A state is a � � 1=2 state if it has an equal number of a’s
and b’s and belongs to H 0 if it does not contain any of the
nearest neighbor combinations �aa�; �bb�; �a #�; �b "�; �" a�,
or �# b�. It is straightforward to show that d is preserved by
H. The states in H 0 and H 0

T
are the d � 1 states. In the

d � 2 sector, we consider first the states with one a and
one b next to each other, ab or ba, in a string of spins.
These d � 2 states are mapped into each other underH. To
be in H 0, abmust enter as X �# ab # . UnderH, this hops
just like " : X #$# X with matrix element V21. Thus the
problem is equivalent to the H 0 problem with Ns � 6 sites
and one finds that these states are separated from the
ground state in H 0 by a gap of order V21. By considering
how hoppable the states are, we expect the states just
considered to be the lowest energy states in the d � 2
sector. We have verified this by exact diagonalization in
H 0 of up to Ns � 18 sites. The d 
 3 states contain more
02680
domain walls and it is easy to see that the hopping becomes
more restricted—thus we expect them to have higher
energy. We have verified this numerically for Ns � 18.
Thus we conclude that H 0 and H 0

T
give the low-energy

sector of the theory—the remaining states in H 0 are
separated from the ground state by a gap of order V21.

We now consider the stability of the solution we have
obtained for H in (3) when V10 � 2V20 and investigate
whether it describes the � � 1=2 state on a thin torus for a
range of L1. We first note that for the real space short-range
interaction V�~r� � r2 � ~r�, V10 � 2V20 � 2� corresponds
to L1 � 2�=

����������
2 ln2

p
� 5:3. The hopping term included in

(3) is then V21 �
3
8�, whereas the leading ignored terms

are small: V30 �
9
128� and V31 �

1
32�. This is close to the

solvable point.
We have performed density matrix renormalization

group (DMRG) [16] studies on a thin cylinder with the
Hamiltonian (2) and V� ~r� � r2 � ~r� including interactions
that extend over up to six lattice constants [17]. We find a
ground state that is homogeneous to very high accuracy
and strong indications of gapless excitations in the region
around L1 � 2�=

����������
2 ln2

p
that we have investigated (4 &

L1 & 8). (When L1 is even smaller, the ground state is a
crystal j """""" . . . "i—the lowest energy state for the short-
est range electrostatic term V10.)

The low-energy sector at the solvable point (H in (3)
with V10 � 2V20) is contained in the spin-1=2 Hilbert
space H 0. The states not in H 0 are separated from the
low-energy states by a gap. Small perturbations of the
Hamiltonian around the solvable point lead, in perturbation
theory, to an effective spin-1=2 Hamiltonian in H 0. The
generated terms are spin operators of quadratic and higher
order. They all have small coefficients since there is a gap
to states not in H 0 (the matrix elements for transitions to
states in H 0

T
vanish). All terms are irrelevant in the sense

of the renormalization group, except for szi s
z
i�n which

makes the noninteracting fermion theory develop into a
Luttinger liquid with interaction parameter K � 1 (at the
solvable point K � 1), see, e.g., [18].

To obtain the general effective Hamiltonian explicitly is
nontrivial. However, the electrostatic terms, Vm0, preserve
H 0 and simply become

P
i;n��2V2n;0 � V2n�1;0 �

V2n�1;0�s
z
i s
z
i�n
. The hopping terms, Vmn, will, in general,

contribute in second order perturbation theory.
Based on the renormalization group argument, and sup-

ported by the DMRG calculations, we conclude that the
� � 1=2 system on a thin torus is a Luttinger liquid for a
finite range of L1 and that the generation of szi s

z
i�n terms

indicates that the interaction parameter that determines the
decay of correlation functions is shifted from its value at
the solvable point.

When L1 increases further, there is either a phase tran-
sition or the state develops continuously into the bulk � �
1=2 state. We conjecture that the latter is the case. The
main support for this comes from the striking similarities
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of the low-energy sector on the thin torus and the compos-
ite fermion description of the bulk state, most notably the
homogeneous ground state and the gapless neutral excita-
tions. Furthermore, we note that the reduction of the
Hilbert space to H 0 by itself implies that the charge on
average is homogeneous—this, or some suitable general-
ization thereof, is likely to be a good approximation also
when L1 increases and longer range interactions come into
play.

Further support for our conjecture comes from consid-
ering the Laughlin filling fraction � � 1=3 [19]. Rezayi
and Haldane have shown that the Laughlin state is the � �
1=3 ground state also on a thin cylinder and that it develops
continuously from a charge density wave state into the
homogeneous Laughlin state as L1 ! 1 [20]. Our
DMRG calculations agree with this—we find, using (2),
for a range of L1 a charge density wave state in quantitative
agreement with that of Rezayi and Haldane. Thus the � �
1=3 ground state of the short-range Hamiltonian develops
continuously into the homogeneous Laughlin state as
L1 ! 1. This lends some support for our conjecture that
the � � 1=2 state also develops adiabatically. However, in
this case there is no gap and the issue is more delicate. The
argument would be strengthened if the picture of the � �
1=2 state given above could be shown to generalize to the
� � 1=3 state on the thin torus, in which case it should be
relevant also for the bulk � � 1=3 state. The mapping of
the low-energy sector at � � 1=2 onto an s � 1=2 XY-spin
chain would then presumably generalize into a mapping of
� � 1=3 onto an s � 1 chain. In passing, we note that this
suggests that the Haldane conjecture for the gaps in spin
chains [21] might apply to the two-dimensional electron
gas in a strong magnetic field.

The thin torus, or cylinder for that matter, with a mag-
netic field perpendicular to its surface is probably not
experimentally accessible. Thus, the experimental conse-
quences of the results in this Letter presumably depend on
whether the results are applicable, mutatis mutandis, to the
bulk case as we conjecture. Our conjecture implies that the
� � 1=2 state is a one-dimensional Luttinger liquid rather
than a two-dimensional Fermi theory. We predict that this
leads to observable effects in the bulk � � 1=2 system,
such as nonlinear I-V characteristics determined by the
Luttinger liquid interaction parameter.

If our conjecture is correct, then it should be possible to
understand the experimental results that are successfully
explained by the standard composite fermion theory [4],
such as the ballistic transport and the surface acoustic wave
results. We note that the appearance of low-energy excita-
tions that are neutral, and hence do not couple to the
magnetic field, is consistent with the ballistic transport
results.
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