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We investigate the failure characteristics of complex networks within the framework of the fiber bundle
model subject to the local load sharing rule in which the load of the broken fiber is transferred only to its
neighbor fibers. Although the load sharing is strictly local, it is found that the critical behavior belongs to
the universality class of global load sharing where the load is transferred equally to all fibers in the system.
From the numerical simulations and the analytical approach applied to the microscopic behavior, it is
revealed that the emergence of a single dominant hub cluster of broken fibers causes the global load
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sharing effect in the failure process.
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The fiber bundle model (FBM) has been studied for
many years in order to explain a variety of failure phe-
nomena caused by cascades [1]. In the FBM, composed of
N heterogeneous fibers put on a lattice, a fiber at the vth
site is broken if the load o, is larger than the threshold
value o' assigned to the fiber following a given probability
distribution function. When the fiber is broken, the load
which was supported by the broken fiber is shared among
intact fibers following a load sharing rule. The two most
frequently studied rules are global load sharing (GLS) [2],
in which the load of a broken fiber is equally shared with
all intact fibers in the whole system, and local load sharing
(LLS) [3], which allows only the nearest intact fibers to
carry the load of a broken fiber.

Depending on which load sharing rule is used, the FBM
has been shown to exhibit totally different behaviors: For
GLS, the FBM has been found to have a phase transition
toward the global failure as the external load per fiber (&) is
increased beyond the nonzero critical point &, [4]. It has
been known that the avalanche size distribution for GLS
follows the power-law form with the universal exponent
—5/2 [5,6], and the universality class has been identified
from the measurement of critical exponents [7]. In con-
trast, the FBM under the LLS rule has been shown to
belong to a completely different universality class; i.e.,
the critical value of the load approaches zero as N is in-
creased following the form &, ~ 1/In(N) [8,9]. Recently,
the transition between the GLS and the LLS regime has
been studied using modified load sharing rules [10].

Until very recently, most studies of the FBM have been
performed on regular lattice structures. In a general per-
spective beyond the fracture of material, however, cascad-
ing failure triggered by overloading happens also in real-
world network systems [11,12]. For instance, the recent
blackout in the United States and Canada was caused by
the cascading breakdown of elements through a power
grid. The scenario of a major blackout is very similar to
the idea of the FBM; once one element fails, then the
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neighbor of the element fails by the increased load from
the failure.

In this Letter, we numerically and analytically study the
FBM subject to the LLS rule on various network structures:
i.e., the Erdos-Rényi (ER) model of a random network
[13], the Watts-Strogatz (WS) model of a small-world
network [14], and the static model of a scale-free network
[15]. Even though the model studied in this work strictly
obeys the LLS rule, it is found that the FBM on complex
networks exhibits completely different universality: the
critical behavior, the avalanche size distribution, and the
form of failure probability function coincide with those of
the FBM under the GLS rule.

First, we briefly describe the FBM under the LLS rule on
complex networks. A version of blackout scenarios for
cascading breakdown of power plants from overloading
is very intuitive to understand how the FBM on complex
networks works. Fibers attached to the vertices of under-
lying networks act as power plants, and the external load
on fibers can be regarded as the demand for electric power.
If the demand for electric power exceeds the capacity of a
power plant, the power plant gets disconnected from the
network and the demand is transferred to neighboring
power plants through the transmission lines, the edges of
the network. In this model, the underlying network is rigid
while the fibers attached to vertices are damaged.

The local load transfer of broken fibers through the
edges of the underlying network is governed by the LLS
rule. Under a nonzero external load N &, the actual load o,
of the intact fiber v is given by the sum of & and the
transferred load from neighboring broken fibers. To sys-
tematically handle the local load transfer from broken
fibers to intact fibers, we define the load concentration
factor K, =o0,/6 as K, =1+ Z/jmj/kj, where the
primed summation is over the cluster of broken fibers
directly connected to v, m; is the number of broken fibers
in the cluster j, and k; is the number of intact fibers directly
connected to j. A simple example is shown in Fig. 1, which

© 2005 The American Physical Society



PRL 94, 025501 (2005)

PHYSICAL REVIEW LETTERS

week ending
21 JANUARY 2005

FIG. 1. The LLS rule applied for the FBM on a complex
network. The vertices bound to broken fibers and intact fibers
are denoted by the broken symbols and the open circles, re-
spectively.

contains two clusters of broken fibers, m; =3, k; =4
and my =2, k, = 3. If o' < (1 + 3/4 + 2/3)&, the fiber
at v will be broken and join the clusters of broken fibers.
We note that this is the generalization of the 1D model
(kj =2) [16,17].

To explore all values of the external load N&, we
increase & quasistatically starting from zero. In a finite-
sized system, the infinitesimal increment 6 of & is ex-
pressed as & = minv[;—lf — &) with the minimization
(min,,) for all intact fibers. This condition is equivalent to
the increase of & just enough to break only the weakest
intact fiber, which is the minimal condition to trigger an
avalanche.

Our numerical scheme is as follows: The threshold
value of the load o' € [0, 1] is assigned to each fiber
following the uniform distribution function [18]. Start
from 0 =0 and repeat the following two steps:
(i) Increase & by the infinitesimal increment &.
(ii) Following the LLS rule, break the fibers with o' <
K, o iteratively until no more fibers break. For each incre-
ment of &, the size s(&) of the avalanche is defined as the
number of broken fibers triggered by the increment. The
surviving fraction x(&) of fibers is the ratio of the number
of remaining intact fibers to N when the external load
reaches N &, and thus is written as

x(@) =1 —% Z s(o). (1)

o<a

We also measure the response function y, or the general-
ized susceptibility, by using
dx

da

o s
X(O-) B NA 0"<U<6’+AS(0-)’ (2)

where we choose the small enough value A = 0.0005 for
the numerical differentiation. The critical value &, of the
external load, which is one of the key quantities of interest,
is defined from the condition of the global breakdown
x(a,) = 0.

Figure 2 displays the critical value &, and the suscepti-
bility y for the FBM under the LLS rule on various net-
work structures, such as the local regular network, the WS
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FIG. 2. (a) The system size (N) dependence of critical points

(d.) for various networks with N = 28 29 .. 215 vertices.
(b) The susceptibility for the networks with N = 2!4. p and y
are the rewiring probability in the WS networks and the ex-
ponent of degree distribution P(k) ~ k=7 in the static model
[15], respectively. The data points are obtained from the aver-
ages over 10* (10° for N = 2!3) ensembles.

network, the ER network, and the scale-free networks.
Strikingly, we find that the critical behavior of the FBM
on complex networks is completely different from that on a
regular lattice. More specifically, while &, for the FBM on
a local regular network vanishes in the thermodynamic
limit and is described by &, ~ 1/In(N) for finite-sized
systems (see the curve for p = 0 in Fig. 2, corresponding
to the WS network with the rewiring probability p = 0),
o for all networks except for the local regular one does
not diminish but converges to a nonzero value as N is
increased. Moreover, the susceptibility diverges at the
critical point following y ~ (&, — &)~ %3, regardless of
the networks, which is again in sharp contrast to the local
regular network [see Fig. 2(b)]. The critical exponent 0.5
clearly indicates that the FBM under the LLS rule on
complex networks belongs to the same universality class
as that of the GLS regime [7] although the load sharing rule
is strictly local.

The evidences that the LLS model on complex networks
belongs to the universality class of the GLS model is also
found in the avalanche size distribution P(s): Unanimously
observed power-law behavior P(s) ~ s~>/2 in Fig. 3(a) for
all networks except for the local regular one (the WS
network with p = 0) is in perfect agreement with the
same behavior for the GLS case [5]. On the other hand,
the LLS model for a regular lattice has been shown to
exhibit completely different avalanche size distribution
[6,9].

The failure probability F (&) is defined as the probability
that the whole system is broken when an external load &, or
less, is applied. In the LLS regime, the failure probability
was studied to test the weak-link hypothesis [17,19,20]. In
the test for the Weibull form, one can see in Fig. 3(b) that
F(d)’s for complex networks fall on a common line which
coincides with F(&) for the well-known GLS case, which
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FIG. 3. (a) The avalanche size distribution P(s) and (b) the test

of failure probability F for the Weibull form. The solid lines in
(a) indicate the result for the GLS regime having exponent
—5/2. The inset of (b) shows the result for the LLS regime on
the regular network (p = 0), which has a clearly different form
from the others.

is very much different for LLS on regular lattices
[17,19,20] [see the inset of Fig. 3(b)]. Consequently, we
again confirm that the LL.S model on complex networks
belongs to the same universality class as that of GLS.

What makes the LLS model on a complex network have
identical critical behaviors of the GLS model? In order to
answer this question, it is helpful to investigate the micro-
scopic details of the failure process. As the external load
increases, the clusters of broken vertices form, grow, and
merge into larger clusters, ultimately resulting in the emer-
gence of a dominantly large cluster (we call it DLC hence-
forth). In case of a regular lattice, all small clusters of
broken fibers are roughly in an equal condition because
of the underlying regular (and thus spatially uniform)
topology. As the external load increases, all small clusters
grow at roughly the same rate, and thus the DLC emerges
abruptly. In contrast, the emergence of a DLC on complex
networks is a gradual process because the DLC is formed at
an early stage of loading and keeps growing continuously,
as shown clearly in Fig. 4(a). The above observation in-
dicates that the growth of the DLC plays a dominant role in
the failure of fibers on complex networks.

Together with the early emergence and the gradual
growth of the DLC, the small-world behavior [14] in
complex networks provides a reasonable qualitative expla-
nation of the GLS-like behavior of the LLS model on
complex networks. More precisely, the small-world effect
causes the average distance from the DLC to intact fibers to
decay fast towards the value below two as the size of the
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FIG. 4. (a) The largest cluster size m; in the failure process

versus the external load &. (b) The average distance d from the
DLC versus the surviving fraction x. (¢) The fraction n(x) of
nearest intact fibers of the DLC as a function of the surviving
fraction x. The symbols and the lines represent the numerical
data and their fits to the curve of Eq. (5), respectively. The data
points are obtained for the networks with N = 2!4 and averaged
over 10* ensembles.

DLC increases (or the surviving fraction x decreases) [see
Fig. 4(b)], which implies that most intact fibers are very
closely located to the DLC and thus the system behaves
similarly to the GLS model with all fibers separated by the
unit distance from each other.

Finally, we apply the mean-field theory to the growth of
the DLC. Let us assume the situation that the system is at
the tth step of the load transfer from the DLC. The surviv-
ing fraction is written as x(t), and thus the cluster is com-
posed of N(1 — x) broken vertices (we assume that there
exists only one cluster) and has k') nearest neighbor intact
vertices. Following the LLS rule, the load o of the
nearest intact vertices of the cluster satisfies the load
conservation condition, which yields

1+ n® —x0 _

(1) —
o o o, 3)

where n” = k) /N. Assuming that the load threshold o
of a fiber is randomly distributed to the whole system
following the cumulative distribution P,,,,(a"), we estab-
lish the recursion equation for x,

— (1)
X(H'l) = x(t) — n(’) 1 — M . (4)
x®

In order to solve the equations, we have to know the func-
tional form of n'”), which is difficult to determine analyti-
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cally. Instead, we assume the simple rational functional
form with two fitting parameters a, b € [0, 1].

n = px(1 — x9)/(1 — ax), 5)

which is motivated as a generalization of the GLS form
(corresponding to @ = b = 1). The numerical data of n”
fit very well to the form (5) as shown in Fig. 4(c).

When the failure stops propagating, the fixed point of the
dynamics described by Eq. (4) satisfies x'"D = x() = x*,
The uniform threshold distribution P.,,,(o) = o, together
with Egs. (3)—(5), results in

bx*(1 — x¥)

1+ —ax* ©)

o(x*) =
The critical value &, of the external load and the surviving
fraction at & are then easily obtained from the maximum
of a(x*), yielding

5.=bx?  xt= b“l b—a 4
—a

Near the GLS regime, » = 1 and a = 1 — €, one obtains

g.=1/4—€/8, xi=1/2 — €/8, ®)
which indicates that the solution for the GLS regime is
revisited at € = 0, in a good agreement with the numerical
simulation where &, has always been found to be smaller
than the GLS value ., = 1/4 (see Fig. 2). In addition,
combining Egs. (3) and (6), we obtain the critical behavior
of x* near 7.,

dx*

5 |z a)~'/2, O

X:

confirming the universal exponent —0.5 for the GLS
regime.

In conclusion, we have investigated the FBM on various
complex networks, including the WS network, the ER
random network, and the scale-free network. From numeri-
cal simulations and an analytical approach, it has been
found that, although the LLS rule is strictly applied, the
critical behavior of failure exhibits the characteristics of
GLS: The critical value of the external load is finite in the
thermodynamic limit; the divergence of the susceptibility
is described by the same critical exponent as in GLS; the
avalanche size distribution and the statistics of failure dis-
play the unique behavior of the GLS regime.
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