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Joint Statistics of the Lagrangian Acceleration and Velocity in Fully Developed Turbulence
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We report experimental results on the joint statistics of the Lagrangian acceleration and velocity in
highly turbulent flows. The acceleration was measured up to a microscale Reynolds number R� � 690
using high speed silicon strip detectors from high energy physics. The acceleration variance was observed
to be strongly dependent on the velocity, following a Heisenberg-Yaglom-like u9=2 increase. However, the
shape of the probability density functions of the acceleration component conditioned on the same
component of the velocity when normalized by the acceleration variance was observed to be independent
of velocity and to coincide with the unconditional probability density function of the acceleration
components. This observation imposes a strong mathematical constraint on the possible functional
form of the acceleration probability distribution function.
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The classical theory of turbulence assumes a scale sepa-
ration between the large scale at which energy is injected
and the small scale at which it is dissipated. This would
suggest the independence of small scale quantities like
acceleration from large scale quantities like velocity. It
has long been recognized that this independence of scales
is only an approximation and our understanding of how
small and large scale statistics may be related has gradually
become increasingly sophisticated [1,2]. Experiment,
simulations, theory, and modeling continue to interact to
refine our understanding. Recently the study of accelera-
tion statistics conditioned on the velocity has provided a
new impetus for examining theory [2,3] and refining sto-
chastic models [4–6].

Here we provide experimental evidence of the depen-
dence of the Lagrangian acceleration on the velocity. The
conditional acceleration variance varies strongly with the
velocity which is not consistent with the assumption of
local homogeneity. We discuss the dependence of the
component acceleration variance on velocity in detail and
then investigate the shape of the probability density func-
tion (PDF) of acceleration conditioned on velocity.

The flow and the acquisition system have been described
in detail in a previous article [7]. The flow was of the von
Kármán type: water was driven by two coaxial disks with
blades and a rim, 20 cm in diameter, 33 cm apart, and
enclosed in a cylindrical tank with a diameter of 48.3 cm.
The disks were rotated at the same angular velocity but in
opposite senses. Some parameters of the flow are shown in
Table I. Note that the energy injection at large scales was
anisotropic (the rms velocity being higher in the horizontal
plane than along the axis of the disks) but that acceleration
was much closer to isotropy, especially at the highest
Reynolds number.

A schematic of the imaging system is displayed in
Fig. 1. A 35 W pulsed laser illuminated the center of the
flow. A 4:1� 4:1� 2:05 mm3 volume was imaged onto
four silicon strip detectors (versus only two in the original
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design of [7]). Each one of these detectors was made of 512
strips (pixels) and recorded one component of the position.
The flow was seeded with 25 �m polystyrene spheres with
density 1.06 times that of water.

Since each detector recorded only one coordinate, it was
necessary to match the four recordings to build a 3D track.
The algorithm used to process the raw data has already
been described in [7]. The magnitude of the intensity signal
was used to match the x and z coordinates or the y and z
coordinates for each pair of detectors. The last step con-
sisted of matching the two recordings of the z component
to get the full 3D trajectory. To compute the acceleration
from the tracks, the position signal was convolved with a
Gaussian kernel that both differentiated the position and
filtered the noise [8].

Acceleration covariance conditional on velocity.—
To check the dependence of acceleration on velocity, we
first studied the tensor haiajjuki. Because of the spatial
reflection invariance of isotropic turbulence, the only non-
zero components should be ha2i juki. Although our flow
was anisotropic at large scales, the acceleration was
nearly isotropic and we found the i � j terms to be zero
within the experimental accuracy. The conditional vari-
ance of the acceleration components is presented in
Fig. 2. One can see that for a given velocity component,
the curves for the conditional variance of all three accel-
eration components are very similar. All three components
vary strongly with the velocity, increasing more than 1
order of magnitude as the value of the velocity component
goes from 0 to 4 times its rms value. It is interesting to note
that the shape of the curves is dependent on the velocity
component but not on the acceleration component. The
ratio ~ut=~uz at R� � 690 is 1.78 (where ~ut and ~uz are
horizontal and vertical rms velocities). If the abscissa
axis were not normalized by the component rms velocity,
the curves would split into two groups: those conditional
on the vertical component and those conditional on the
horizontal components. This is a result of the large scale
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TABLE I. Parameters of the flow. f is the rotation frequency of the disks, ~ut � hu2xi
1=2 �

hu2yi
1=2, ~uz � hu2zi

1=2, ~at � ha2xi
1=2 � ha2yi

1=2, ~az � ha2zi
1=2, � is the dissipation rate (the uncer-

tainty is about 15% [7]), �� �
���������
�=�

p
is the Kolmogorov time (� � 0:989� 10	6 m2 s	1 is the

kinematic viscosity), � � ��3=��1=4 is the Kolmogorov length, R� is the Taylor scale Reynolds
number, and �t is the sampling interval.

f ~ut ~uz ~at ~az � �� � R� �t

Hz ms	1 ms	1 ms	2 ms	2 m2s	3 ms �m �s
0.6 0.082 0.049 1.52 1.41 5:77� 10	3 13.1 114 285 74.9
1 0.245 0.143 18.0 16.7 0.143 2.63 51 485 25.9
3.5 0.50 0.28 87.0 84.6 1.14 0.929 30 690 14.3
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velocity being anisotropic while the small scale accelera-
tion is nearly isotropic.

For isotropic homogeneous turbulence, the conditional
acceleration covariance tensor can be rewritten as

haiajjui � �2
a�f�u� 	 g�u�


uiuj
u2

� �2
ag�u��ij; (1)

where �2
a � 1

3 ha
2i; f and g are normalized conditional

variances of acceleration components parallel and perpen-
dicular to the velocity vector, respectively. f and g depend
only on the velocity magnitude u. We cannot check directly
the validity of this expression as the convergence requires
data sets larger by orders of magnitude. What is within our
reach, however, is to study haiajjui, the acceleration co-
variance tensor conditioned on the magnitude of the veloc-
ity and f and g.

Figure 3 displays haiajjui for all combinations of �i; j� at
R� � 690. One can see that for i � j, the covariance
fluctuates about zero and takes on much smaller values
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FIG. 1 (color online). Top view of the setup of the imaging
system. A small measurement volume of size 4:1� 4:1�
2:05 mm3 at the center of the flow was illuminated by a 35 W
pulsed laser. This volume was then imaged at 45  scattering
angle in the midplane of the cylindrical tank, so as to record the
three coordinates of the particle motion in the flow. The char-
acteristics of the optics were identical to those in [7]. The
rotation axis of the disks was along the z direction.
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than the diagonal terms. The off-diagonal terms of the
covariance tensor can be considered to be zero within the
experimental accuracy. For the case i � j, the conditional
variance increases strongly with u and the curves for all
three components collapse. The use of the velocity magni-
tude seems to have removed the influence of the large scale
anisotropy. The conditional acceleration varies by a factor
of 20 as the velocity magnitude goes from 0 to 5urms.

The Heisenberg-Yaglom scaling of the full acceleration
variance is ha2i � a0�3=2�	1=2 [9] but can also be rewritten
as ha2i / �9=2

u L	3=2�	1=2 as � / �3
u=L (�u is the velocity

component rms value, L is the flow integral scale). As
pointed out by Aringazin and Mazhitov [3], this suggests
a natural scaling for the conditional acceleration variance

ha2jui / u9=2: (2)

Noting that ha2ju � 0i is strictly positive, we fitted the
experimental normalized conditional acceleration variance

ha2jui=�2
a � �� ��u=�u�

9=2 (3)
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FIG. 2 (color online). Conditional acceleration component
variance ha2i juji at R� � 690. The velocity components have
been normalized by their variance. Circles: ha2i juyi, squares:
ha2i juxi, and triangles: ha2i juzi.
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FIG. 3 (color online). Acceleration covariance conditioned on
velocity magnitude haiajjui at R� � 690. The main window
contains the diagonal terms (i � j) and the insert contains the

off-diagonal terms (i � j). urms �
�������������������������
1
3 �2~u

2
t � ~u2z�

q
� 0:43 m=s.
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as shown in Fig. 4. The fit gives � � 2:6, 2.06, 2.10 and
� � 0:012, 0.029, 0.032 for R� � 285, 485, and 670,
respectively. The agreement between the data and the fit
is striking. At the smallest Reynolds number, the accelera-
tion variance is increasing much less. The curves corre-
sponding to the two highest Reynolds numbers almost
superimpose, suggesting a convergence at high Reynolds
number. Note that a similar fit based on the multifractal
scaling proposed by Biferale et al. [2], ha2jui / u4:57 is not
distinguishable within the precision of the experiment.
Sawford et al. [5] suggested a u6 scaling and proposed
an argument based on vorticity tubes to explain it. The u9=2

scaling, however, is more consistent with the data.
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FIG. 4 (color online). Normalized conditional acceleration
variance ha2jui=�2

a for R� � 690, 485, 285, circles, triangles,
and squares, respectively. Solid lines are the fit (3).
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We now project the acceleration onto another set of axes.
It is split into the component parallel to velocity and two
components perpendicular both to each other and to the
velocity. Figure 5 shows the conditional average and vari-
ance of these components. As shown in the insert, the
average acceleration conditioned on the velocity magni-
tude remains less than 5% of

�������������
ha2i jui

q
and is zero within the

experimental accuracy. The main window displays the
parallel �f�u�
 and perpendicular �g�u�
 acceleration var-
iances. They are seen to be slightly different, the parallel
one being smaller than the perpendicular ones. The two
perpendicular variances superimpose within the error. In
this figure we also compare our data with direct numerical
simulations (DNS) of homogeneous and isotropic turbu-
lence at R� � 420 [5]. The experimental and DNS results
are qualitatively similar; the DNS curves increase faster
than the experimental one. The dependence of the experi-
mental curves on the Reynolds number (Fig. 4) is stronger
than reported from DNS [5]

Joint distribution of acceleration and velocity compo-
nents.—So far, we have only considered the second mo-
ment of the acceleration conditioned on the velocity. We
have sufficient statistics to investigate the shape of the PDF
of an acceleration component conditioned on the value of
the same component of velocity: P�aijui�. We already
observed that the width of the PDF increases with ui. To
see a possible change in the shape, we plot in Fig. 6 the
conditional PDFs normalized by the conditional variance
so that for any given value of uy the variance of the PDF is
unity. Within the uncertainty of the measurement, no
change of shape can be observed. These conditional
PDFs are also compared to the unconditional PDF of the
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FIG. 5 (color online). Acceleration variance conditioned on
velocity magnitude at R� � 690. Circles: acceleration parallel
to the velocity vector �f�u�
; squares and triangles: acceleration
perpendicular to the velocity �g�u�
. Dashed lines: f and g from
DNS at R� � 420 [5]. The insert shows the mean acceleration
conditioned on u (same symbols).
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FIG. 6 (color online). PDFs of acceleration conditioned on
velocity at R� � 690. Symbols show normalized conditional
acceleration component PDFs for various values of the velocity
uy � 0, 4uy � 0:5~ut, � uz � ~ut, ?uy � 1:5~ut, �uy � 2~ut.
The solid line shows the normalized unconditional acceleration
component PDF P�ay=ha

2
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acceleration component P�a�. The unconditional PDF is
superimposed on all the other curves. It seems that the
dependence of acceleration on the velocity is totally taken
into account by the variance. This imposes constraints on
the functional form of the PDF of acceleration. Let us call
this functional form P . By definition,

P�ai� �
Z �1

	1
P�aijui�P�ui�dui: (4)

If we assume that the functional form of the conditional
PDF is the same as that of the unconditional one, then P
must obey

P �a� �
Z �1

	1

�a

�aju
P

�
�a

�aju
a
�

1������������
2��2

u

p e�	u2=2�2
u�du; (5)

where �aju �
�������������
ha2jui

p
, and �a and �u are the acceleration

and velocity component rms values. We assume that the
PDF of the velocity components is Gaussian which was
verified experimentally [10]. This equation restricts con-
siderably the possible functional form of P . �-stable dis-
tributions are possible candidates [11].
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Our unique experimental setup allowed us to study
complex quantities such as the statistics of the acceleration
conditional on the velocity at sufficiently high Reynolds
numbers, where the universal properties may be expected.
We observed a strong dependence of acceleration on ve-
locity which is at odds with the assumption of local homo-
geneity. We observed that the conditional acceleration
variance strongly increases with velocity following a u9=2

scaling inspired by the Heisenberg-Yaglom scaling of the
full acceleration variance. This scaling is also in agreement
with the multifractal scaling prediction proposed by
Biferale et al. [2]. The dependence of acceleration on
velocity appears to be contained in the conditional vari-
ance. The conditional PDF of acceleration also collapses
onto the unconditional one. This observation imposes a
constraint on the possible functional form of the latter
PDF restricting considerably the class of admissible
distributions.
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