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Correlated Spontaneous Emission Laser as an Entanglement Amplifier
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We consider a two-photon correlated emission laser as a source of an entangled radiation with a large
number of photons in each mode. The system consists of three-level atomic schemes inside a doubly
resonant cavity. We study the dynamics of this system in the presence of cavity losses, concluding that the
creation of entangled states with photon numbers up to tens of thousands seems achievable.
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FIG. 1. (a) Schematics for the entanglement amplifier. Atomic
medium is placed inside a doubly resonant cavity. (b) A three-
level atomic system in a cascade configuration. The transitions
between levels jai � jbi and levels jbi � jci at frequencies �1
and �2 are resonant with the cavity. The transition jai � jci is
dipole forbidden and can be induced by strong magnetic fields.
(c) A Raman three-level atomic system where the fields of
frequencies �3 and �4 are strong classical driving fields and
the fields at frequencies �1 and �2 are resonant with the cavity
modes.
Coherent atomic effects lie at the basis of many novel
and interesting effects in quantum optics and lasers [1]. In
this Letter we show that atomic coherence in a two-mode
laser can generate fields that are entangled even in the
presence of cavity losses. This leads to an entanglement
amplifier.

The generation of macroscopic entangled states is re-
ceiving renewed interest. Schemes for entanglement be-
tween large atomic ensembles have been demonstrated [2].
However, the generation of macroscopic entangled states
of photons remains an open question. Schemes based on
the parametric down-conversion process driven by a strong
pump pulse have been considered [3–6]. In this Letter we
present a new class of entanglement amplifiers based on
two-mode correlated spontaneous emission lasers (CEL)
[7] involving three-level atoms interacting with two modes
of the cavity and show that the two lasing modes are
entangled.

In order to see clearly how a CEL can lead to an
entangled state, we first recall that, in a quantum beat laser
[8] or a Hanle-effect laser [9], a beam of three-level atoms
in the ‘‘V’’ configuration interacts with two modes of the
field. The upper levels jai and jbi are initially prepared in a
coherent superposition or are driven by a coherent field.
We consider the simple case when an atom is in a super-
position of upper states and there are no photons in the
modes associated with the jai ! jci and the jbi ! jci
transitions; i.e., the initial state of the atom-field system
is �jai � jbi�=

���
2

p
� j0; 0i. An atomic transition to the

lower level jci leads to the entangled state �j1; 0i �
j0; 1i�=

���
2

p
of the field modes. It is thus clear that an

amplified entangled state will be generated in a correlated
emission laser. In this Letter we discuss different atomic
configurations, such as a three-level atomic system in a
cascade configuration or Raman configuration. For cascade
atoms, the upper and lower levels are prepared in a coher-
ent superposition and the photons are emitted in cascade
transitions [10,11].

A question from a practical point of view is whether one
can formulate criteria for measuring entanglement in a
given system. We recall that formally a system is entangled
if it is nonseparable; i.e., the density operator for the state �
cannot be written as a convex combination of product
05=94(2)=023601(4)$23.00 02360
states

� 	
X
j

pj�
�1�
j � ��2�

j

with pj 
 0 and
P

jpj 	 1. In this Letter, we use the
criterion proposed in [12] to verify the entanglement of
the two modes of the field in a correlated emission laser.
According to this criterion, a state of the system is en-
tangled if the sum of the quantum fluctuations of two
Einstein-Podolsky-Rosen (EPR)-like operators û and v̂ of
the two modes satisfy the inequality

��û�2 � ��v̂�2 < 2: (1)

Here
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û 	 x̂1 � x̂2; v̂ 	 p̂1 � p̂2 (2)

and x̂j 	 �aj � ayj �=
���
2

p
and p̂j 	 �aj � ayj �=

���
2

p
i (with

j 	 1; 2) are the quadrature operators for the two modes 1
and 2. For a general state, this is a sufficient criterion for
entanglement and as shown in [12], for two-mode continu-
ous variable Gaussian states, this becomes a necessary and
sufficient criterion.

We consider a system in which atoms interact with two
modes of the field inside a doubly resonant cavity
[Fig. 1(a)]. We first consider three-level atoms in a cascade
configuration [Fig. 1(b)]. Such a system has been discussed
within the context of a correlated spontaneous emission
laser. The dipole allowed transitions jai � jbi and jbi �
jci are resonantly coupled with the two nondegenerate
modes �1 and �2 of the cavity, while the dipole forbidden
transition jai � jci is induced by a semiclassical field (for
example, by applying a strong magnetic field for a mag-
netic dipole allowed transition). We denote the Rabi fre-
quency of this field by �e�i�. The interaction Hamiltonian
(in the rotating wave approximation) for this system is
given by

HI 	 	hg1�a1jaihbj � ay1 jbihaj� � 	hg2�a2jbihcj � ay2 jci

� hbj� �
1

2
	h��e�i�jaihcj � ei�jcihaj�;

(3)

where a1�a
y
1 � and a2�a

y
2 � are the annihilation (creation)

operators of the two nondegenerate modes of the cavities
and g1 and g2 are the associated vacuum Rabi frequencies.

A cascade system may be hard to implement experimen-
tally as the transition between the states jai and jci in
Fig. 1(b) is dipole forbidden. A more convenient system
is depicted in Fig. 1(c). Here atomic levels jai, jbi, and jci
are coupled by four fields. The fields at frequencies �1 and
�2 are resonant with the cavity modes and the fields of
frequencies �3 and �4 with Rabi frequencies �3 and �4,
respectively, are classical driving fields. The classical field
02360
�3 is resonant with the jai � jci transition whereas the
field �4 is detuned from the jai � jci transition by an
amount �. Similarly, the quantized field at the frequency
�1 is assumed to be resonant with the jai � jbi transition
and the field at frequency �2 is detuned from the jai � jci
by �. This system has recently been demonstrated experi-
mentally and shows promise in applications to quantum
memory in atomic systems [13,14]. The Hamiltonian of
this system in the interaction picture is

HI 	 �
	h
2
�3e�i�3 jaihcj �

	h
2
�4e�i�4ei�tjaihbj

� 	hg01a1jaihbj � 	hg02a2e
i�tjaihcj � H:c: (4)

When the detuning � is sufficiently large, the Anti-
Stocks Raman transition jbi � jai � jci can be effectively
estimated as a single transition between levels jbi and jci,
and the effective Hamiltonian of the whole system can be
written as

Heff 	 �
	h
2
�3e�i�3 jaihcj � 	hg01a1jaihbj

� 	h
g02�4

2�
ei�4a2jbihcj � H:c: (5)

Equation (5) is of the same form as the Hamiltonian (3) for
the cascade system. It is therefore clear that the atomic
system of the form given in Fig. 1(c) can be used to
implement a correlated emission laser [10,11] and a
noise-free amplifier [15]. Here we discuss its application
as an entanglement amplifier.

The master equation of the system in the configuration
of Fig. 1(b) can be obtained from the Hamiltonian (3) by
using the standard methods of laser theory. We consider
only the linear theory. We assume that the atoms are
injected in the cavity in the lower level jci at a rate ra.
The resulting equation for the reduced density operator for
the cavity field modes is [11,16].
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y
2a2 � ��22 � ��

22�a2�a
y
2 � � ���

12a1a2�

� �21�a1a2 � ���
12 � �21�a2�a1�e

i� � ���
21a

y
1a

y
2�� �12�a

y
1a

y
2 � ��12 � ��

21�a
y
1�a

y
2 �e

�i�

� �1�a
y
1a1�� 2a1�a

y
1 � �ay1a1� � �2�a

y
2a2�� 2a2�a

y
2 � �ay2a2�; (6)
where we have included the cavity damping terms in the
usual way (we have assumed that the two cavity modes are
coupled to two independant vacuum reservoirs here), with
�1 and �2 being the cavity decay rates of mode 1 and
mode 2, respectively. The coefficients �11; �22; �12, and
�21 are given by

�11 	
g21ra
4

3�2

��2 ��2���2 � �2

4 �
; (7)
�22 	 g22ra
1

�2 ��2 ; (8)

�12 	 g1g2ra
i�

���2 ��2�
; (9)

�21 	
g1g2ra

4

i���2 � 2�2�

���2 ��2���2 � �2

4 �
: (10)

We have assumed, for simplicity, that the atomic decay rate
1-2
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FIG. 2. (a) Time development of ��û�2 � ��v̂�2, and (b) hN̂i
for initial coherent states j100;�100i in terms of the normalized
time gt. Various parameters are ra 	 22 kHz, g 	 g1 	 g2 	
43 kHz, � 	 �1 	 �2 	 3:85 kHz, � 	 20 kHz, and � 	
400 kHz. In these figures, 1 and 2 represent the results for the
parametric case and the general case, respectively. Parameters
are chosen such that they correspond to the micromaser experi-
ments [17].
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� is the same for all the three atomic levels. Here the terms
proportional to �11 and �22 correspond to the emission
from level jai and absorption from level jci, respectively,
and the terms proportional to �12 and �21 correspond to
atomic coherence generated by the coupling field �.

We now discuss how the above system leads to entan-
glement amplification. We first analyze the case when � is
much greater than � and then proceed to the general case
with arbitrary �.

In the limit when � � �, we have from Eqs. (7)–(10)
that

�11 � 0; �22 � 0; �12 � �21 � ig1g2ra
1

��
: (11)

Under these conditions Eq. (6) simplifies considerably and
we obtain (with i� 	 �12 	 �21)

_�	�i���a1a2�a2�a1�ei�� i���ay1a
y
2 �ay1�a

y
2 �e

�i�

� i��a1a2��a2�a1�e
i�� i��ay1a

y
2��ay1�a

y
2 �e

�i�

��1�a
y
1a1��2a1�a

y
1 ��ay1a1�

��2�a
y
2a2��2a2�a

y
2 ��ay2a2�: (12)

This equation describes a parametric oscillator in the para-
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metric approximation. We can calculate the time evolution
of the quantum fluctuations of the EPR operators û and v̂
and the mean photon numbers from Eq. (12). In particular,
we calculate the time evolution of the various moments
involved in the quantities ��û�2 � ��v̂�2 and the total
photon numbers hN̂i 	 hN̂1i � hN̂2i. The resulting expres-
sions are

�
��û�2���v̂�2

�
�t�	f���û�2���v̂�2��0�

�
2�

���
ge�2�����t�

2�
���

(13)

hN̂i�t� 	
��
hN̂i�0� �

�2

�2 � �2

�
cosh�2�t�

�

�
��

�2 � �2 � ha1a2 � ay1a
y
2 i�0�

�

� sinh�2�t�
�
� e�2�t �

�2

�2 � �2 ; (14)

where we have taken the phase of the driven field to be
� 	 ��=2 since only under this special phase the positive
exponential terms in ��û�2 � ��v̂�2 can be canceled out
and ensure that this quantity does not grow with time.

It is clear that, for any initial state of the field, the
quantity ��û�2 � ��v̂�2 becomes smaller as time evolves
and becomes less than 2 after some time. For large time
when ��� ��t � 1, we have ��û�2 � ��v̂�2 	 2 �

��� <
2, i.e., the entanglement criterion is satisfied. Thus the
system evolves into an entangled state and remains en-
tangled unless the entanglement is destroyed by some other
dissipation channels. We show below that the results based
on the parametric approximation are valid for small values
of gt only and higher order contributions in �=� tend to
wipe out the entanglement as time progresses. Thus, for the
general case, the entanglement remains only for a limited
period of time.

The other important quantity is the mean number of
photons in the two modes. If we consider the large time
behavior of the total photon number, we can neglect the
negative exponent terms in the sinh and cosh functions in
Eq. (14). We then have hN̂i�t� 	 �hN̂i�0� � ha1a2 �
ay1a

y
2 i�0� � �=��� ���exp�2��� ��t� � �2=��2 � �2�.

This shows that, for any initial states of the two modes, the
total mean photon number increases exponentially for
sufficiently large t provided �> �. The condition for the
growth of mean photon numbers for small t involves the
initial states of the field. For example, for the initial coher-
ent states j�1i and j�2i for the two modes, this will very
much depend on the phase of the coherent amplitude of
these two modes. The condition dhN̂i�t�=dt > 0, for t 
 0,
leads us to the following inequality �ha1a2 � ay1a

y
2 i�0� �

�hN̂i�0�< 0 that is ���1�2 � ��
1�

�
2� � ��j�1j

2 �
j�2j

2�< 0. To satisfy this inequality, the best choice is
that, in addition to �> �, we also have �1�2 	 �j�1�2j.
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FIG. 3. (a) Time development of ��û�2 � ��v̂�2 and (b) hN̂i
for initial vacuum states for the two modes with �=� 	 20, 23,
25. Curves in (b) are truncated when ��û�2 � ��v̂�2 	 2 and the
state is not necessarily entangled. The chosen parameters are
ra 	 g 	 � and �=g 	 0:001.
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We now return to the general case. The various field
moments required in the inequality (1) can be obtained
from Eq. (6). The resulting expressions are complicated
and we do not reproduce them here.

In Figs. 2 and 3 we show the time development of
��û�2 � ��v̂�2 and hN̂i for different �=� and fixed �=g.
In Fig. 2, we plot these quantities for an initial coherent
state with 104 photons in each mode. The choice of the
phase for the coherent amplitude is such that the condition
�1�2 	 �j�1�2j is satisfied. The parameter values are
such that they correspond to the micromaser experiments
in Garching [17]. We find that the two states remain
entangled for a long time. The parametric results are valid
only for gt < 10. The agreement between the parametric
results with the exact results for the mean photon number
hN̂i is valid for a longer range. We also see that an increase
in the photon numbers by almost 40 fold is possible. In
Fig. 3, we plot ��û�2 � ��v̂�2 and hN̂i for initial vacuum
states for the two modes. Again, the entanglement is re-
tained for a large number of photons. The time scale for the
two modes to remain entangled increases as the Rabi
frequency of the driving field is increased.

In summary, we have studied a correlated emission laser
system in which a macroscopic entangled state between
two modes of the radiation field can be built. The entan-
glement does not depend on the initial state of the fields.
Our analysis indicates that such macroscopic entangled
02360
states can be realized as suggested above by placing the
atomic medium inside the doubly resonant cavity. Another
possibility is a system wherein atoms with long lived states
pass through the cavity one at a time such that there is at
most one atom inside the cavity at a given time in the
presence of the classical driving fields. This corresponds to
experimental arrangements such as those used in the mi-
cromaser experiments [17,18].
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