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Generalized Pseudopotentials for Higher Partial Wave Scattering
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We derive a generalized zero-range pseudopotential applicable to all partial wave solutions to the
Schrödinger equation based on a delta-shell potential in the limit that the shell radius approaches zero.
This properly models all higher order multipole moments not accounted for with a monopolar delta
function at the origin, as used in the familiar Fermi pseudopotential for s-wave scattering. By making the
strength of the potential energy dependent, we derive self-consistent solutions for the entire energy
spectrum of the realistic potential. We apply this to study two particles in an isotropic harmonic trap,
interacting through a central potential, and derive analytic expressions for the energy eigenstates and
eigenvalues.
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The first step in studying the complex physics of a many-
body system is modeling the fundamental two-body inter-
actions. At low energies and for central potentials, a partial
wave expansion reduces the complexity. Near zero tem-
perature, s-wave scattering typically dominates and the
true interaction potential can be modeled by a contact
interaction via the Fermi pseudopotential, parametrized
by the s-wave scattering length [1]. Such a description
provides a highly accurate model of the behavior of quan-
tum degenerate gases [2]. For energies outside the Wigner-
threshold regime, the Fermi pseudopotential can be gener-
alized to include an energy-dependent scattering length so
that the mean-field and trap energy-level shifts can be
calculated in a self-consistent manner [3].

Further generalizations are necessary when higher order
partial waves contribute to the interaction. In this Letter we
derive an energy-dependent pseudopotential applicable to
l > 0 scattering that captures the critical features of both
the free and bound-state spectrum of the realistic inter-
action potential. We apply this to exactly solve the
Schrödinger equation for two particles trapped in a har-
monic well, interacting through a central potential, some-
thing typically done only in perturbation theory. An
example in which higher partial wave scattering of trapped
particles plays an important role is in the physics of degen-
erate gases of identical fermions where the s-wave scatter-
ing cross section vanishes [4]. Moreover, even for bosons,
these higher l waves can be resonantly coupled to the
dominant l � 0 scattering due to noncentral forces [5]
such as the dipolar spin-spin interaction [6], second order
spin-orbit interaction [7], and/or the forces of an aniso-
tropic trapping potential [8,9]. An example of the latter is
the interaction between two atoms, each trapped in a
separate harmonic well, leading to an axially symmetric
potential for the relative coordinate. In previous work, we
discovered a new ‘‘trap induced shape resonance’’ whereby
molecular bound states are shifted into resonance with trap
vibrational levels due to the trap’s potential energy [10].
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Such a resonance can have an l-wave symmetry, and can be
modeled by our generalized pseudopotential.

The first attempt to derive a generalized pseudopotential
was made by Huang and Yang [11,12]. Given a central
force, the true asymptotic wave function for each l wave
was supposed to follow from a contact potential,
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where al is the effective scattering length generalized to
higher partial waves. Recently Roth and Feldmeier [13]
uncovered difficulties with this pseudopotential noting that
the mean-field energy shift of interacting fermions in a trap
is incorrect by a factor of �l� 1�=�2l� 1�. They proposed
that a distinct effective contact interaction is needed to
calculate energy level shifts in perturbation theory and
that the Huang and Yang pseudopotential is simply not a
proper effective interaction to use in a mean-field descrip-
tion of dilute quantum gases [13]. We show here that this
distinction is unnecessary. Rather, the disagreement is due
to a fundamental problem in Huang’s original derivation of
the pseudopotential [12]. Huang and Yang incorrectly map
the higher order multipoles associated with l > 0 onto a
monopolar � function at the origin. We correct this by
employing a �-shell potential in the limit as the shell ra-
dius approaches zero. In this limit our pseudopotential
approaches Huang’s original pseudopotential, but with
the correct prefactors thereby giving both the correct ma-
trix elements and eigenfunctions. Our approach also cor-
rects a different formulation of the contact interaction
which is used often in the description of Rydberg atom
collisions [14].

In the contact potential construction, one takes the
asymptotic radial wave function associated with a given
partial wave Rl�r� � Al�jl�kr� � tan�l�k�nl�kr��, valid
only outside the range of the true potential, and extends
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it to all r. The boundary condition at the origin is set by the
zero-range potential, parametrized by the l-wave asymp-
totic phase shift �l�k�. Here we assume that the realistic
potential has a finite range, valid when it falls off like 1=r3

or faster. The scattering phase shift can be calculated
directly via numerical or analytic solution to the
Schrödinger equation or may be obtained through spectro-
scopic data. In order to treat the multipole singularity of the
� potential at the origin correctly, we write the pseudo-
potential as the limit of a � shell with its radius approach-
ing zero,

vl�r� � lim
s!0

��r� s�Ôl�r�; (2)

where the operator Ô�r� contains the correct prefactors and
regularization. To derive the correct form of Ô�r� we solve
the radial Schrödinger equation. The familiar inside and
outside solutions expressed in spherical Bessel and
Neumann functions are

R�
l �r� � Bl�jl�kr�� for r < s; (3)

R�
l �r� � Al�jl�kr� � tan�l�k�nl�kr�� for r > s: (4)

Requiring continuity of the wave function at r � s fixes
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where we have used the asymptotic forms of the Bessel
functions in the limit ks
 1. Integrating the radial equa-
tion over the � function gives us a second boundary con-
dition. Again taking s
 1=k, and using Eq. (5),
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We can fulfill this condition by choosing
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With the reduced mass � and 
h scaled to one, the pseudo-
potential is then
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Comparing this to the original Huang and Yang pseudo-
potential we see that they differ by a factor �l�1�=�2l�1�.
This occurs because the original derivation ignores the in-
side wave function contribution of weight �l in Eq. (7).
The �-shell potential approach circumvents the singularity
at the origin, allowing one to correctly capture higher
multipoles. Furthermore, the �-shell potential also enfor-
ces the correct ordering of limits, taking s! 0 as the final
step. With this correction, we reproduce the perturbative
02320
mean-field energy-level shift found by Roth and Feldmeier
[13] with a mathematically rigorous contact potential that
also yields the correct asymptotic eigenfunctions.

In the above form, the �-shell potential is not Hermitian
as the derivative acts solely to the right. The regular-
ization we choose is necessary in order to extend the
domain of the corresponding Hamiltonian to irregular
functions that diverge as 1=rl�1 when r! 0. Although
this does not cause a problem in most applications, in
general one must be cautious. In order to make the poten-
tial Hermitian on the whole domain, including both regular
and irregular functions, an additional regularization opera-
tor �rl=�2l� 1�!��@2l�1=@r2l�1rl�1� can be added that acts
to the left as projector onto the regular function subspace.
Such dual regularization is cumbersome and so we gener-
ally choose to work with only a single regularization
operator.

Our form of the �-shell potential depends on the energy-
dependent phase shift �l�k� which can usually be approxi-
mated in the Wigner-threshold regime by a constant scat-
tering length. We find it more useful here, however, to
define a fully energy-dependent l-wave scattering length
that captures not only corrections due to the effective
range, but all higher order terms,

a2l�1
l �k� � �

tan�l�k�

k2l�1
: (10)

As in the previously studied s-wave case [3], the general
l-wave �-shell potential in our derivation exactly reprodu-
ces the correct energy-dependent scattering phase shift
�l�k� that arises from the true potential and therefore
exactly reproduces the correct asymptotic wave functions
for all partial waves at all energies. In fact, using an
energy-dependent scattering length for higher partial
wave scattering has added benefits since the Wigner-
threshold law may not hold for all l, leading to strong
energy dependence of the scattering length Eq. (10) near
zero energy. For example, for power law potentials of the
form Cn=rn with l > n=2, the phase shift is not propor-
tional to k2l�1 but instead behaves as kn [15]. Although the
generalized scattering length at low energies is not con-
stant, the full energy-dependent solution will hold. A gen-
eral breakdown of the pseudopotential approximation only
occurs in cases where the realistic potential does not have a
finite range and an outside wave function cannot be defined
as in Eq. (3).

For two interacting particles in a trap, one solves for the
discrete eigenvalues of the energy-dependent Hamiltonian
derived from an energy-dependent pseudopotential using a
self-consistent procedure [3]. To this end, the eigenspec-
trum of the system is first calculated as a function of a
constant scattering length, giving E�a�. Then the effective
scattering length is calculated as a function of kinetic
energy EK for untrapped scattering states of the interaction
potential, yielding a�E�. Simultaneous solutions are then
found numerically. This two step procedure allows one to
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accurately determine the exact shift to the energy levels in
the trap due to atomic interactions when the interaction
range and width of the trap wave functions are orders of
magnitude different, as is typically the case.

For negative energies, k � i� is purely imaginary and
one must analytically continue the scattering length,

a2l�1
l ��� �

tanh�i�l�i���

�2l�1
: (11)

Similar to the s-wave case [10], this analytic continuation
allows us to calculate both the shift in the energy spectrum
of the trap eigenstates (positive energies) and the bound
states of the interaction potential (negative energies).
Consider the radial wave function for negative energies,

Rl�r� �
Al
2
�h�1�l �i�r�f1� tanh�i�l�i���g

� h�2�l �i�r�f1� tanh�i�l�i���g�; (12)

expressed in terms of the spherical Hankel functions of
the first and second kind h�1;2�l . Strictly speaking, this
solution is only allowed for a normalizable wave func-
tions; the true bound states of the �-shell potential. These
occur when tanh�i�l�i��� � 1 since then the coefficient of
the exponentially increasing h�2�l vanishes. At these ener-
gies, al � 1=�. The �-function bound states are thus lo-
cated at E� � �� 
h��2=�2�� � � 
h2=�2�a2l �, just as in the
s-wave case. The condition for a �-function bound state,
tanh�i�l�i��� � 1, is fulfilled only when the phase shift has
a pole on the imaginary axis, �l�i�� � �i1. This occurs at
each of the negative energies at which the S-matrix of the
true interaction potential has a pole, i.e., at the energies of
each of its bound states. The generalized l-wave pseudo-
potential with an energy-dependent scattering length thus
provides an accurate description of the entire energy spec-
trum of the true interaction potential, bound and scattering,
even for l-wave scattering lengths with strong energy
dependence, i.e., outside the Wigner-threshold law regime.

Our �-shell approach offers a direct method for obtain-
ing analytic solutions to a scattering problem by simply
matching boundary conditions across the � shell as we now
demonstrate by employing the energy-dependent � shell to
find all partial wave solutions to the Schrödinger equation
for two particles in an isotropic harmonic trap interacting
through a central potential. This is of particular interest for
application to degenerate quantum gases, e.g., two inter-
acting identical fermions. In the following, all distances are
scaled to characteristic harmonic oscillator length z0 ������������������

h=��!�

p
. After separating out the center of mass motion,

we make the ansatz R�
l �r� � rl exp��r2=2�w�

l �r� for the
relative coordinate radial wave function inside and outside
the shell. The radial equation including the scaled trapping
potential r2=2 then reduces to the Kummer differential
equation [16], zw00�z� � �b� z�w0�z� � aw�z� � 0, in the
regions where the interaction potential is zero. Independent
solutions of this equation are the confluent hypergeometric
functions, U�a; b; z� and M�a; b; z�, where z � r2, a �
02320
�", and b � l� 3=2. The inside solution must be propor-
tional to rl exp��r2=2�M��"; l� 3=2; r2�, which behaves
regularly as rl around the origin, whereas the outside
solution must be proportional to rl exp��r2=2�U��"; l�
3=2; r2�, which falls of exponentially for large r. The inside
and outside solutions are then

R�
l �r� � Blr

le�r
2=2M��"; l� 3=2; r2� for r < s; (13)

R�
l �r� � Alr

le�r
2=2U��"; l� 3=2; r2� for r > s: (14)

We again require continuity of the wave function at r � s.
In the limit ks
 1,
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where Cl � ��1�l��l� 3=2����"� l� 1=2�=� and
A0
l � Al=Cl. Integrating the radial equation over the �

function gives us again a second boundary condition.
Taking s
 1=k and using Eq. (15), the derivatives of the
outside and inside radial solutions are
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Applying the operator Ô�r� (8) to (14) for small s
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and inserting Eqs. (16) and (17) into (6) we arrive at the
implicit eigenvalue equation,
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This is the general eigenvalue equation for the l-partial
wave interaction that must be solved self-consistently for
the energy-dependent al as described above. For l � 0 this
reduces to the known s-wave eigenvalue equation [17].
The corresponding wave functions are the inside and out-
side wave functions noted above, where the ratio Bl=A0

l is
fixed by Eq. (15). For finite shell radius these wave func-
tions are in principle numerically normalizable unlike
solutions obtained with a � potential at the origin where
the unnormalizable solutions diverge as r��l�1� for r! 0.

In order to verify the accuracy of the higher partial wave
energy spectrum we chose a spherically symmetric step
potential well with range d and depth V0 as a test [see
Fig. 1(a)]. Figures 1(b)–1(d) show a comparison of the
exact eigenspectra and the �-shell approximation for wells
with different finite range d. In particular, we chose a
well with an l-wave bound state close to dissociation to
emphasize the accuracy of the approximation even in the
regime of strongly energy-dependent scattering lengths
al where the Wigner-threshold law does not hold. We
find good agreement for relatively large ranges d of the
well test potential, as shown in Fig. 1. The breakdown
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FIG. 1 (color online). (a) Step-well test interaction potential
with range d � 0:4z0 and depth V0 � 34:95 
h! in a harmonic
trap, l � 1 eigenstates (dotted lines), and corresponding reduced
wave function (solid line). The �-shell solution in the limit of the
shell radius s! 0 (dashed line) coincides with the actual eigen-
states outside the range d. (b)–(d) Comparison between exact
eigenvalues (solid lines) of the step-well interaction plus har-
monic trap and pseudopotential eigenvalues (crosses) as a func-
tion of the range of the well potential and for l � 0; 1; 2 states.
The unshifted interaction bound states (fixed at Eb � �2) and
trap eigenstates are shown as dashed lines.
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of the pseudopotential approximation at larger ranges is
due to the modification of the interaction potential over
its finite range by the harmonic trap. One can estimate
the difference between the energy shift with and without
this modification for the interaction bound states in first
order perturbation theory, �E � h shelljr

2=2j shelli �
h welljr

2=2j welli. Here  well is the exact bound state asso-
ciated with the step-well potential bound state and  shell is
the bound-state wave function of the �-function bound
state. For l � 1 and l � 2 these two wave functions differ
more substantially than for s waves, resulting in a bigger
deviation of the pseudopotential approximation as the
range d becomes large [Figs. 1(b)–1(d)]. In the case of
ultracold collisions the energy-dependent pseudopotential
will therefore be a good approximation as long as the char-
acteristic interaction length scale of the van der Waals
interaction is much smaller that the characteristic length
scale of the trap z0 [3].

In summary, we have derived a generalized zero-range
pseudopotential for higher partial wave interactions that
captures both the scattering solutions and bound-state
spectrum self-consistently. By employing a limiting pro-
cedure on a finite radius �-shell potential, we provided a
rigorous correction to the long standing error in Huang’s
and Yang’s pseudopotential. The pseudopotential offers a
direct method to analytically solve the Schrödinger equa-
tion, as demonstrated for the case of interacting trapped
atoms, where we derived the higher partial wave energy
02320
spectrum and obtained normalizable eigenfunctions. This
is of special interest for degenerate gases of identical
fermions where l � 1 scattering is the primary contribu-
tion to the interaction and also for Bose systems where
noncentral forces play an important role. Our accurate
modeling of the interaction and the analytical calculation
of the eigenenergies should provide new avenues for study-
ing degenerate gases of interacting ultracold atoms in
tightly confining traps [2], such as in optical lattices [18].
Beyond its application to many-body problems, the �-shell
pseudopotential is also useful for modeling controlled
collisions, which could play an important role in quantum
information processing.

After completing this paper, we learned of recent theo-
retical work by Kanjilal and Blume [9] in which the l � 1
special case of Eq. (18) has been derived and applied to 1D
and 3D confined fermions, and of work by Peach et al. [19]
in which Eq. (18) has been derived using a quantum-defect
theory approach.
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