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A characteristic feature of small-x lepton-proton data from HERA is geometric scaling: the fact that in
the region of small Bjorken variable x, x & 0:01, all data can be described by a single variable Q2=Q2

s;p�x�,
with all x dependence encoded in the so-called saturation momentum Qs;p�x�. Here, we observe that the
same scaling ansatz accounts for nuclear photoabsorption cross sections and favors the nuclear depen-
dence Q2

s;A / A	Q2
s;p, 	 ’ 4=9. We then make the empirical finding that the same A dependence accounts

for the centrality evolution of the multiplicities measured in Au� Au collisions at RHIC. It also allows
one to parametrize the high-pt particle suppression in d� Au collisions at forward rapidities. If these
geometric scaling properties have a common dynamical origin, then this A dependence of Q2

s;A should
emerge as a consequence of the underlying dynamical model.
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All data for the photoabsorption cross section
�

�p�x;Q2� in lepton-proton scattering with x � 0:01
have been found [1] to lie on a single curve when plotted
against the variableQ2=Q2

s;p, withQ2
s;p � x	� and � ’ 0:3.

To further explore this empirical property of geometric
scaling, we study here how experimental data on lepton-
nucleus collisions constrain the geometric information en-
tering the saturation scale. We also ask to what extent the
geometric scaling ansatz can account for characteristic
features of particle production in other nuclear collision
systems.

Geometric scaling is usually motivated in the QCD
dipole model [2] where the total �h cross section reads

�
�h
T;L �x;Q

2� 

Z
dr

Z 1

0
dzj	�

T;L�Q
2; r; z�j2�hdip�r; x�: (1)

Here 	T;L are the perturbatively computed transverse and
longitudinal wave functions for the splitting of � into a q q
dipole of transverse size r with light-cone fractions z and
�1	 z� carried by the quark and the antiquark, respec-
tively. Both for a proton (h 
 p) and for a nucleus (h 

A), �hdip�r; x� can be written as an integral of the dipole
scattering amplitude Nh over the impact parameter b,

�hdip�r; x� 
 2
Z
dbNh�r; x;b�: (2)

In this setting, geometric scaling corresponds to the con-
dition Nh�r; x;b� � Nh�rQs;h�x;b��. This can be seen by
rescaling the impact parameter in (2) in terms of the radius

Rh of the hadronic target, b 
 b=
����������
�R2

h

q
,

�
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T;L �x;Q

2� 
 �R2
h

Z
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T;L�Q
2; r; z�j2

 2
Z
d bNh�rQs;h�x; b��: (3)

For a trivial impact-parameter dependence of the satura-
tion scale, Qs;h�x;b� 
 Qs;h�x���Rh 	 b�, and since
05=94(2)=022002(4)$23.00 02200
j	�

T;L�Q
2; r; z�j2 is proportional to Q2 times a function of

r2Q2, Eq. (3) depends solely on �h 
 Q2=Q2
s;h�x�. For

realistic functional shapes of the form Qs;h�x;b� /
f�b=Rh�, the same � dependence results if Q2

s;h�x� is de-
fined as an appropriate b average of Q2

s;h�x;b�. In the case
of �A interactions, geometric scaling is the property that
the A dependence of the ratio �

�A
T;L =�R

2
A can be absorbed

in the A dependence of this impact-parameter independent
saturation scale Qs;A�x�,

�
�A��A�

�R2
A



�

�p��A�

�R2
p

: (4)

For this A dependence, we make the ansatz that the satu-
ration scale in the nucleus grows with the quotient of the
transverse parton densities to the power 1=�,

Q2
s;A 
 Q2

s;p

�A�R2
p

�R2
A

�
1=�

) �A 
 �p

�
�R2

A

A�R2
p

�
1=�
; (5)

where the nuclear radius is given by the usual parametri-
zation RA 
 �1:12A1=3 	 0:86A	1=3� fm. We treat � and
�R2

p as free parameters to be fixed by data.
In Fig. 1 we plot the experimental �p data [3] with x �

0:01 as a function of �p 
 Q2=Q2
s;p. For Q2

s;p, we use in
this plot the Golec-Biernat and Wüsthoff (GBW) parame-
trization [4] with Q2

s;p 
 � x=x0�
	� in GeV2, x0 
 3:04

10	4, and � 
 0:288. To extend to low virtuality, the x
dependence of the GBW parametrization is modified by a
mass term x 
 x��Q2 � 4m2

f�=Q
2�, with mf 
 0:14 GeV.

The data [3] are seen to be parametrized well by the scaling
curve

�
�p�x;Q2� � ���p� 
 �0�E � ��0; �� � ln��; (6)

where E is the Euler constant, ��0; �� is the incomplete �
function, and � 
 a=�bp, with a 
 1:868 and b 
 0:746.
The normalization is fixed by �0 
 40:56 mb. Assuming
in the GBW model that the b dependence of Q2

s;h is a
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FIG. 1 (color online). Geometric scaling for �p (upper panel,
data from [3]), �A (middle panel, data from [5,6]), and the ratio
of data for �A over the prediction from (6) (lower panel). As an
additional check, the lower plot also shows data for �A nor-
malized with respect to �C [7] and divided by the correspond-
ing prediction from Eq. (6).
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Gaussian, and approximating j	�
j2 / ��2��r2 	 4=Q2�,

one obtains the functional shape (6) from (3). For our
purpose, however, Eq. (6) is just a convenient ansatz for
the scaling function ���h�.

To determine Q2
s;A, we compare the functional shape of

(6) to the available experimental data for �A collisions
with x � 0:0175 [5–7], using � 
 a=�bA. The parameters �
and �R2

p in (4)–(6) are fitted by  2 minimization adding
the statistical and systematic errors in quadrature. The data
sets [5–7] have additional normalization errors of 0.4%,
0.2%, and 0.15%; the quality of the fit improves by multi-
plying the data by the factors 1.004, 1.002, and 0.9985,
respectively. We obtain � 
 0:79� 0:02 and �R2

p 


1:55� 0:02 fm2 for a  2=d:o:f: 
 0:95; see Fig. 1 for
comparison. If the normalizations are all set to 1, we obtain
an almost identical fit with � 
 0:80� 0:02 and �R2

p 


1:57� 0:02 fm2 for a  2=d:o:f: 
 1:02. If we impose � 


1 in the fit, which corresponds to Q2
s;A / A1=3 for large

nuclei, a much worse value of  2=d:o:f: 
 2:35 is ob-
tained. We conclude that the small-x experimental data
on �A collisions favor an increase of Q2

s;A faster than
A1=3. The numerical coincidence b ’ � is consistent with
the absence of shadowing in nuclear parton distributions at
Q2 � Q2

s;A.
Can geometric scaling and, in particular, the A depen-

dence and energy dependence of Qs;A�x� account for the
pt-integrated multiplicity in symmetric nucleus-nucleus
02200
collisions at midrapidity? To address this question, we
turn now to the heuristic ansatz

dNAA

dy

��������y�0
/ Q2

s;A�R
2
A; (7)

which arises in several models of hadroproduction [8–11].
These models relate the parton distribution measured in
�

�A to the hadroproduction measured in nucleus-nucleus
collisions. For example, the factorized formula [8] calcu-
lates gluon production by convoluting A-dependent gluon
distribution functions:

dNAB
g

dydptdb
/
	S
p2
t

Z
dk%A�y;k2;b�%B�y; �k	 pt�2;b�;

(8)

where %h�y;k;b� 

R
dr expfir � kgNh�r; x;b�=�2�r2�

[9], and y 
 ln1=x. For geometric scaling, %A�y;k2;b� �
%�k2=Q2

s;A�y;b��, we find the dependence of Eq. (7),

dNAA
g
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��������y�0
/
Z dpt

p2
t
dkdb%

�
k2

Q2
s;A

�
%
�
�k	pt�2

Q2
s;A

�


Q2
s;A�R

2
A

Z ds
s2
d�d b%��2�%���	s�2�: (9)

Also without invoking factorization in (8), any integrand
with �k=Qs;A� scaling leads to Eq. (7); see [10,11]. In all
these models, the hadron yield is assumed to be propor-
tional to the yield of produced partons.

The energy dependence of (7) is given by the GBW
parameter � 
 0:288. For the centrality dependence of
(7), we use the known proportionality in symmetric A�
A collisions between the number Npart of participant nucle-
ons and the nuclear size A. With Q2

s;A / A1=3�, and � 


0:79� 0:02, we thus obtain

1

Npart

dNAA

d(

��������(�0

 N0

���
s

p
�N�1	��=3�

part : (10)

As seen in Fig. 2, this ansatz accounts for experimental
data from the PHOBOS Collaboration [12] on charged
multiplicities in Au� Au collisions at

���
s

p

 19:6, 130,

and 200 GeV=A. Even the p� p data ([13], as quoted in
[12]) at

���
s

p

 19:6 and 200 GeV are accounted for by

Eq. (10). Since all data are at midrapidity, the Jacobian
between rapidity y and pseudorapidity ( is approximately
constant. It has been absorbed in the overall normalization
N0 
 0:47 which is independent of the energy and the
centrality of the collision. Figure 2 also shows the result
of (10) for intermediate Relativistic Heavy-Ion Collider
(RHIC) energy (

���
s

p

62:5GeV=A), for Large Hadron

Collider (LHC) energy (
���
s

p

 5500 GeV=A) and for

smaller colliding nuclei. Equation (10) implies that the
energy and the centrality dependence of the multiplicity
factorize, in agreement with the results by PHOBOS [12].

In the current debate of RHIC data on the suppressed
high-pt hadroproduction in nuclear collisions, the rele-
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FIG. 3 (color online). Normalized ratios of central and semi-
central to peripheral d� Au collisions measured by BRAHMS
[17] compared to results from Eq. (11). The bands represent the
uncertainty in the determination of Ncoll [17]. Results for the
same centrality classes at the LHC are given in the lower panel.

FIG. 2 (color online). Energy and centrality dependence of the
multiplicity of charged particles in Au� Au collisions (10)
compared to PHOBOS data [12]. Also shown in the lower panel
are the p� p data [13] and results for

���
s

p

 62:5 and

5500 GeV=A.
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vance of nuclear shadowing has been discussed repeatedly
[14,15]. It is clear by now [16] that the A dependence of
pt-differential hadroproduction in nucleus-nucleus colli-
sions and in deuteron-nucleus collisions at midrapidity
both involve additional nuclear effects which are at least
as significant as nuclear shadowing. On the other hand,
arguments have been put forward [14,15] that in d� Au
collisions at forward rapidity nuclear shadowing may be
the dominant effect. Motivated by the phenomenologi-
cal success of the scaling ansatz (10), we now test to
what extent the centrality dependence of pt-differential
hadron spectra in d� Au emerges naturally from the
geometric scaling found in �A. We use Eq. (8) with the
ansatz %A�k 
 Q=2� ’ ���A� such that �A 
 k2=4 Q2

s;A,
where now the gluon saturation scale Q2

s;A 
 NcQ
2
s;A=CF

is employed. The approximation%�k 
 Q=2� ’ ���A� has
been checked numerically. The parton distribution in the
deuteron is taken to fall off sufficiently quickly, %d �
1=knt , n� 1, so that we can write for the centrality classes
c1, c2,

dNdAu
c1

Ncoll1d(d
2pt

=
dNdAu

c2

Ncoll2d(d
2pt

�
Ncoll2%A�pt=Qs;c1�

Ncoll1%A�pt=Qs;c2�

�
Ncoll2���c1�

Ncoll1���c2�
: (11)

We see the use of this pocket formula mainly in emphasiz-
ing the plausible claim that the suppression of d� Au at
forward rapidity traces directly the suppression of nuclear
02200
parton distributions at small x. For the comparison in Fig. 3
to data [17] on the normalized yields of central and semi-
central over peripheral d� Au collisions, we use the num-
ber of nucleon-nucleon collisions Ncoll in different cen-
trality bins [17] with Ncoll1 
 13:6� 0:3, 7:9� 0:4 and
Ncoll2 
 3:3� 0:4. Only the two most forward rapidities
( 
 2:2 and 3.2 are compared. We find that Eq. (11) cap-
tures the main features of the recent data by BRAHMS
[17], but it shows a weaker rapidity dependence. A more
quantitative discussion is certainly beyond the accuracy of
(11). The only conclusion from this exercise is that the
more differential analysis of (8) is not inconsistent with
data in d� Au.

We now comment on the differences with other ap-
proaches. The geometric scaling in �A data has been
studied in [18], where a growth of Q2

s;A / A	, 	 � 1=3,
has been found. This disagreement with our finding could
have several origins. First, 0:01< x< 0:1 was allowed in
[18]; however, in this antishadowing region, we find no
scaling in the data, as expected. Moreover, [18] does not
modify the variable x for smallQ2 as done in this work and
in the GBW model. Second, [18] uses RA / A1=3, which
leads to differences, in particular, for small A; we find a
much worse fit in terms of  2 for such an ansatz. In [18]
this disagreement is improved by introducing a free pa-
rameter  in the A-dependent normalization of the nuclear
FA2 data, A		1. In our case, however, this normalization is
fixed by a dimensional quantity given by the scaling con-
dition (4).
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The multiplicities in Au� Au collisions at RHIC
have been studied [19] on the basis of Eq. (8) assuming
Q2
s;A / A1=3. These authors are led to an expression

which is Eq. (10) with �
1 times an additional factor
ln�

���
s

p �N1=3
part� argued to come from scaling violations. We

note that, for the accessible range of A, A4=9 �

A1=3 ln�A1=3�; this is the reason why both approaches pro-
vide a fair description of the data at RHIC. However, the
energy dependence in the logarithmic prefactor introduced
in [19] implies a flatter centrality dependence with increas-
ing energy.

Finally, the connection between the small x and the A
dependence of parton distribution functions, and the sup-
pression of normalized yields in d� Au collisions [17]
at forward rapidity, has been discussed in several recent
works [14,15]. Equation (11) contributes to this discussion
by illustrating to what extent the suppression of high-pt
particles in d� Au at RHIC can be accounted for by the
shadowing in �A collisions; see Eq. (6).

Here we have discussed to what extent data for different
collision systems in �A, d� Au, and A� A can be re-
lated through geometric scaling. Our study does not ex-
clude the possibility that geometric scaling in �p and �A
is a numerical coincidence without any dynamical origin.
However, nonlinear small-x QCD evolution equations
[20,21] allow one to absorb the entire dependence of
small-x parton distributions on energy and geometry into
a single quantity, Qs;h. The data discussed here are cur-
rently regarded [16] as the main support for such nonlinear
saturation effects. In fact, the scaling function � in (6)
resembles the asymptotic solution of the Balitsky-
Kovchegov (BK) equation: it behaves as ln�k=Qs;p�

[�Q2
s;p=k

2�b] for small [large] k [14,22]. Given that these
nonlinear evolution equations hold in a novel high-density
regime of QCD which may become experimentally acces-
sible, it is of obvious interest to ask whether the connection
between geometric scaling in the theory and in the data can
be made more quantitative. On the theoretical side, this
requires at least the study of the impact-parameter depen-
dence [23] of small-x evolution and the control of higher
order effects. In particular, running coupling effects are
known qualitatively to decrease the energy dependence
[24] and the A dependence [25] of the saturation scale in
comparison to the BK equation at fixed coupling. While an
A dependence of Q2

s;A / A1=3 is often assumed [26], much
stronger ones (such as 	 ’ 2=3 [27]) have also been pro-
posed. The present work has analyzed to what extent data
constrain these energy and A dependences. These con-
straints have to be met by nonlinear small-x evolution or
by any other model which aims at providing the common
dynamical origin for geometric scaling in different nuclear
collisions.
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014017 (1999).

[5] M. R. Adams et al., Z. Phys. C 67, 403 (1995).
[6] M. Arneodo et al., Nucl. Phys. B441, 12 (1995).
[7] M. Arneodo et al., Nucl. Phys. B481, 3 (1996); B481, 23

(1996).
[8] L. V. Gribov, E. M. Levin, and M. G. Ryskin, Phys. Rep.

100, 1 (1983).
[9] M. A. Braun, Phys. Lett. B 483, 105 (2000); Y. V.

Kovchegov and K. Tuchin, Phys. Rev. D 65, 074026
(2002); R. Baier, A. H. Mueller, and D. Schiff, Nucl.
Phys. A741, 358 (2004).

[10] Y. V. Kovchegov, Nucl. Phys. A692, 557 (2001).
[11] K. J. Eskola, K. Kajantie, P. V. Ruuskanen, and

K. Tuominen, Nucl. Phys. B570, 379 (2000).
[12] PHOBOS Collaboration, B. B. Back et al., Phys. Rev. C

65, 061901 (2002); 70, 021902 (2004).
[13] W. Thome et al., Nucl. Phys. B129, 365 (1977); G. J.

Alner et al., Z. Phys. C 33, 1 (1986).
[14] J. L. Albacete et al., Phys. Rev. Lett. 92, 082001 (2004).
[15] D. Kharzeev, E. Levin, and L. McLerran, Phys. Lett. B

561, 93 (2003); R. Baier, A. Kovner, and U. A.
Wiedemann, Phys. Rev. D 68, 054009 (2003);
D. Kharzeev, Y. V. Kovchegov, and K. Tuchin, Phys.
Rev. D 68, 094013 (2003); hep-ph/0405045.

[16] M. Gyulassy and L. McLerran, nucl-th/0405013.
[17] BRAHMS Collaboration, I. Arsene et al., Phys. Rev. Lett.

93, 242303 (2004).
[18] A. Freund, K. Rummukainen, H. Weigert, and A. Schafer,

Phys. Rev. Lett. 90, 222002 (2003).
[19] D. Kharzeev and M. Nardi, Phys. Lett. B 507, 121 (2001);

D. Kharzeev and E. Levin, Phys. Lett. B 523, 79 (2001).
[20] I. Balitsky, Nucl. Phys. B463, 99 (1996); Y. V. Kovchegov,

Phys. Rev. D 60, 034008 (1999).
[21] N. Armesto and M. A. Braun, Eur. Phys. J. C 20, 517

(2001); M. Lublinsky, Eur. Phys. J. C 21, 513 (2001);
S. Munier and R. Peschanski, Phys. Rev. Lett. 91, 232001
(2003); Phys. Rev. D 70, 077503 (2004).

[22] E. Iancu, K. Itakura, and L. McLerran, Nucl. Phys. A708,
327 (2002); A. H. Mueller and D. N. Triantafyllopoulos,
Nucl. Phys. B640, 331 (2002).

[23] K. Golec-Biernat and A. M. Stasto, Nucl. Phys. B668, 345
(2003); E. Gotsman et al., Nucl. Phys. A742, 55 (2004).

[24] D. N. Triantafyllopoulos, Nucl. Phys. B648, 293 (2003);
M. A. Braun, Phys. Lett. B 576, 115 (2003).

[25] A. H. Mueller, Nucl. Phys. A724, 223 (2003);
K. Rummukainen and H. Weigert, Nucl. Phys. A739,
183 (2004).

[26] L. D. McLerran and R. Venugopalan, Phys. Rev. D 49,
2233 (1994); 49, 3352 (1994).

[27] Y. V. Kovchegov, Phys. Rev. D 61, 074018 (2000);
E. Levin and K. Tuchin, Nucl. Phys. B573, 833 (2000).
2-4


