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Power of an Axisymmetric Pulsar
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Certain exact properties of the stationary force-free magnetosphere of an axisymmetric pulsar are
obtained. In particular, it is shown that a magnetic separatrix has an inclination angle of 77.3� to the
equatorial plane. The electromagnetic field has an R�1=2 singularity inside the separatrix near the light
cylinder. A numerical simulation of the magnetosphere which crudely reproduces these properties is
presented. The numerical results are used to estimate the power of an axisymmetric pulsar: L � �1�
0:1��2�4=c3. Thus, the background magnetic configuration, on which all the puzzling pulsar phenomena
are taking place, is now known with some confidence.
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I. Introduction.—A magnetic dipole � rotating at
angular velocity � loses energy at a rate L �
�2=3��2sin2��4=c3, where � is the angle between the
rotation axis and the dipole. This energy is emitted in a
form of electromagnetic radiation with frequency �.

It is thought that a magnetized neutron star rotating
around its magnetic axis loses energy at about the magne-
todipole rate L��2�4=c3, even though � � 0 in this
case, and classical magnetodipole formula predicts zero
radiated power. It is also known that such neutron stars,
known as pulsars, actually emit radiation at frequencies
much greater than �—all the way from radio to gamma
rays in some cases. The energy loss from an aligned rotator
is possible because the star creates free charges that form a
magnetosphere with nonzero Poynting flux along open
field lines—the well-known prediction of Goldreich
and Julian [1]. We confirm this prediction in this Letter
and calculate the power of axisymmetric pulsars L � �1�
0:1��2�4=c3.

The pulsar power formula is of great importance in
astrophysics. In particular, one estimates the magnetic
fields of neutron stars by measuring the pulsar spin-down
rate and then applying the magnetodipole formula. But [1]
does not solve the magnetosphere equation. Not only the
dimensionless coefficient in the power was unknown, it
was not even proven that the pulsar power is independent
of the radius of the neutron star.

Another reason for a rigorous analysis of the axisym-
metric pulsar is the puzzle of pulsar luminosity. Pulsar
radio emission is characterized by very high brightness
temperatures, and is thought to be coherent. The mecha-
nism of coherent radio emission is unknown. Clearly, the
first step in understanding radio emission is the calculation
of the unperturbed background—the stationary force-free
magnetosphere.

The first calculation of the shape of the force-free axi-
symmetric pulsar magnetosphere was performed by
Contopoulos, Kazanas, and Fendt [2]. This important paper
demonstrated that a stationary solution does exist, and the
power of the pulsar must be close to the magnetodipole
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value. But, as we will show, the resolution of [2] was
inadequate. Because of poor resolution, [2] missed a po-
tentially important property of the pulsar magneto-
sphere—the R�1=2 singularity of electromagnetic field in
the vicinity of the critical circle (the intersection of the
light cylinder and the equatorial plane; see below).

In Sec. II, by solving the stationary force-free equations
in the vicinity of the critical circle, we show that (i) the
separatrix inclination angle is equal to 77.3� and (ii) the
electromagnetic field has an R�1=2 singularity near the
critical circle inside the separatrix. Neither of these prop-
erties are seen in the numerical results of [2].

We therefore repeated the simulation of [2] and found
the following (Sec. III). At numerical resolution similar to
that of [2], our code reproduces most of their results. But at
higher resolution, the separatrix steepens and fattens, and
the singularity of the electromagnetic field inside the sep-
aratrix starts to develop. The numerical simulation crudely
reproduces the predicted properties of the magnetosphere.
We used our numerical results to estimate the power of an
axisymmetric pulsar: L � �1� 0:1��2�4=c3.

Pulsar magnetosphere equation: In the appendix we
describe force-free electrodynamics (FFE)—a remarkable
version of plasma physics without any plasma properties
appearing explicitly. There we also discuss the applicabil-
ity of the force-free approximation. To finish the introduc-
tion we must give a brief derivation of the pulsar
magnetosphere equation [3].

It is assumed that electromagnetic forces are much
stronger than inertia, thus j�B	 c�E � 0, or

r� B� B	r2	r	 � 0: (1)

Here E;B are electric and magnetic fields, �; j are charge
and current density, and 	 is the electrostatic potential; the
fields are stationary. For axisymmetric fields, we represent
the magnetic field by the toroidal component of the vector
potential  =r and by the quantity A � 2I=c, where I is the
poloidal current:
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FIG. 1. Stationary force-free axisymmetric pulsar magneto-
sphere. The thick line shows the separatrix  0 � 1:27. Thin
lines correspond to  intervals of 0:1 0.
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in cylindrical coordinates r; z; subscripts mean partial de-
rivatives. Using (2) in (1), one gets the pulsar magneto-
sphere equation [3]:
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Here F� � � A� � dA� �d , A� � is an arbitrary function,
	 �  follows from the boundary condition on the surface
of the star, and we use dimensionless units

c � � � � � 1: (4)

The basic equation (3) must be solved with the small
distance boundary condition

 !
r2

�r2 	 z2�3=2
; r; z! 0; (5)

which corresponds to the dipole field.
Michel [4] has found an exact solution of the magneto-

sphere equation for a magnetic monopole rather than a
dipole star, proving that solutions of (3) which are smooth
across the light cylinder (r � 1) do exist in some cases.

II. Near the singular circle.—The basic equation (3) can
be solved in the vicinity of the singular circle, jzj � 1 and
jr� 1j � 1. In this region, (3) can be approximated as

x� xx 	  zz� 	  x �
1

2
F; (6)

where x � r� 1.
We assume that there is a nonzero return current flowing

along the separatrix (Fig. 1). This assumption will be
confirmed by numerical simulations of Sec. III. Also, one
can show that a zero return current assumption leads to the
breakdown of the force-free approximation in the vicinity
of the singular circle [5]. On the other hand, nonzero return
current automatically gives B> E in the vicinity of the
critical circle, because near the light cylinder the magni-
tude of poloidal magnetic field is close to the magnitude of
electric field. We have also checked that the numerical
solution of Sec. III gives B> E everywhere, not just near
the critical point.

Let  0 be the value of the potential on the separatrix, and
A0 � A� 0 � 0�. Then the return current is equal to A0=2.
From (6), we get the jump condition across the separatrix

�r �2j � 0	0 � �r �2j � 0�0 � �
1

2x
A2
0: (7)

In the closed line region, for  >  0, we must therefore
have  / ��x�1=2. Thus electric and magnetic fields di-
verge as inverse square root in the vicinity of the singular
circle. This is an admissible singularity, since the total
energy of the fields remains finite.
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We can now find the leading order solution in the closed
line region. We set

 �  0 	 R1=2f���; (8)

where x � R sin� and z � R cos�. Then (6) gives inside
the separatrix
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f � 0: (9)

Solving this ordinary equation numerically for df=d� � 0
at � � ��=2, we find f�� � �0:222� � 0. Thus the in-
clination angle of the separatrix is 77.3�.

Knowing the separatrix inclination angle, we can solve
(6) in the open line region, too. We assume that in the open
line region  �  0 � R�f���, and correspondingly F /

� 0 �  �1��1=��. Then Eq. (6) reads

1

sin�

d
d�

�
sin�

df
d�

�
	 ���	 1�f �

C
sin�

f1��1=��: (10)

Here the two free parameters � and C should be adjusted
so as to have (i) f��0:222� � 0, (ii) f��=2� � 0, and
(iii) no singularity at � � 0. A numerical solution gives

 0 �  / R2:4; F� � / �� 0 �  �0:58: (11)

All these properties are roughly reproduced by the nu-
merical simulation presented in Sec. III.

III. Axisymmetric pulsar magnetosphere.—Numerical
solution of the axisymmetric pulsar equation (3) can be
obtained in the following way [2,6]. One takes an arbitrary
F� � and solves (3) in the inner (r < 1) and in the outer
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FIG. 2. The function F which makes the solution of the
magnetosphere equation (3) smooth across the light cylinder.
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(r > 1) regions using appropriate boundary conditions [the
boundary condition at the light cylinder being  r �
F� �=2]. This, of course, does not give the true solution,
because one gets  �1� 0; z� �  �1	 0; z�. One then
makes a number of adjustments of F� �, aimed at reducing
the jump  �1� 0; z� �  �1	 0; z� for all z. An important
finding of [2] is that this procedure actually gives an every-
where smooth solution.

In our simulation we followed the same method. We
were adjusting F� � until an acceptable solution was ob-
tained. A solution was called acceptable if the following
integral

R
1
0 dz� �1� 0; z� �  �1	 0; z��2=�1	 z2� was

reduced to less then 10�7 (starting from � 1 at F � 0).
Equation (3) was solved by a simple relaxation method.
Simultaneously with the relaxation, the adjustment of F
was carried out, in a way similar to that of [2]. After an
acceptable solution was obtained, the adjustment of F was
stopped, while the relaxation was carried out for a suffi-
TABLE I. Simu

Resolution � function width d Separatrix va

200� 100 0.02 1.27
200� 100 0.03 1.27
200� 100 0.04 1.30
200� 100 0.06 1.32
200� 100 0.08 1.35
200� 100 0.1 1.38
100� 50 0.1 1.40
100� 50 0.06 1.34
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cient number of steps to ensure that our  �r; z� does solve
(3) for the obtained F� �.

The full function Ffull which must be used in (3) consists
of the regular piece F (the one shown in Fig. 2 ) and the
delta-function piece F�� � � ��

R
F��� �  0�. In the

numerical simulation the delta-function piece was
smoothed over the  interval � 0;  0�1	 d��. We modeled
the delta function by a parabola, but we have checked that a
constant gives the same result. Most importantly, the simu-
lation was carried out for different values of d. For a given
spatial resolution, the numerical scheme works well only
for large enough d. Small values of d require good resolu-
tion. The figures show the case d � 0:03. Table I lists some
of the simulations that were carried out. The independence
of numerical results on the radius of the star, for small radii
of the star, and on the outer boundaries location, for distant
boundaries, was checked.

The power of the pulsar, which is proportional to the
spin-down rate, is obtained by integrating the Poynting flux
over an arbitrary sphere. One gets the dimensionless power

L �
Z  0

0
d A� �; (12)

where A� � � �2
R 
0 d 

0F� 0��1=2 is obtained from the
regular part of F. From Table I we estimate the power of
an axisymmetric pulsar L � �1� 0:1��2�4=c3.

Our numerical solution reproduces the features pre-
dicted in Sec. II in the following sense: (i) the inclination
angle increases with decreasing d and the extrapolated
value of inclination is about 70�, (ii) the maximum of the
magnetic field in the inner part of the separatrix becomes
more pronounced with decreasing d, and (iii) the function
F demonstrates a singularity similar to (11).

However, we have not accurately reproduced either of
the four numbers given Sec. II. A really good numerical
solution should show (i) the 77� separatrix inclination,
(ii) the  �  0 / R1=2 singularity in the inner region,
(iii) the F� � / �� 0 �  �0:58 singularity, and (iv) the
 0 �  / R2:4 singularity in the outer region. Until such
a solution is obtained, one cannot be really sure that a
stationary force-free pulsar magnetosphere exists, and one
lation results.

lue  0 Separatrix inclination (�) Power

63 1.01
60 1.02
56 1.06
50 1.10
48 1.15
48 1.19
42 1.27
48 1.17
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cannot be really sure that the power of an axisymmetric
pulsar is L � �1� 0:1��2�4=c3.

This work was supported by the David and Lucile
Packard Foundation.

Appendix: Force-free electrodynamics.—(This appendix
contains a large excerpt from Ref. [7].) Force-free electro-
dynamics is applicable if electromagnetic fields are strong
enough to produce pairs and baryon contamination is
prevented by strong gravitational fields [8]. Pulsars, Kerr
black holes in external magnetic fields, relativistic accre-
tion disks, and gamma-ray bursts are the astrophysical
objects whose luminosity might come originally in a pure
electromagnetic form describable by FFE.

FFE is classical electrodynamics supplemented by the
force-free condition:

@tB � �r� E; (A1)

@tE � r� B� j; (A2)

�E	 j�B � 0: (A3)

r �B � 0 is the initial condition. The speed of light is c �
1; � � r �E and j are the charge and current densities
multiplied by 4�. The electric field is everywhere perpen-
dicular to the magnetic field, E � B � 0. The electric field
component parallel to the magnetic field should vanish
because charges are freely available in FFE. It is also
assumed that the electric field is everywhere weaker than
the magnetic field, E2 <B2. Then Eq. (A3) means that it is
always possible to find a local reference frame where the
field is a pure magnetic field, and the current is flowing
along this field. FFE is Lorentz invariant.

Equation (A3) can be written in the form of Ohm’s law.
The current perpendicular to the local magnetic field can
be calculated from Eq. (A3). The parallel current is deter-
mined from the condition that electric and magnetic fields
remain perpendicular during the evolution described by the
Maxwell equations (A1) and (A2). We thus obtain the
following nonlinear Ohm’s law:

j �
�B � r � B� E � r �E�B	 �r �E�E� B

B2 :

(A4)

Equations (A1), (A2), and (A4) form an evolutionary
system (initial condition E � B � 0 is assumed). It there-
fore makes sense to study stability of equilibrium electro-
magnetic fields in FFE. One can also study linear waves
and their nonlinear interactions in the framework of
FFE [9].

One can introduce a formulation of FFE similar to
magnetohydrodynamics (MHD); then we can use the fa-
miliar techniques of MHD to test stability of magnetic
configurations. To this end, define a field v � E� B=B2,
which is similar to velocity in MHD. Then E � �v� B
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and Eq. (A1) becomes the ‘‘frozen-in’’ law

@tB � r� �v�B�: (A5)

From v � E�B=B2, and from Eqs. (A1)–(A3), one ob-
tains the momentum equation

@t�B2v� � r� B� B	r�E�E	 �r �E�E; (A6)

where E � �v� B. Equations (A5) and (A6) are the
usual MHD equations except that the density is equal to
B2 and there are order v2 corrections in the momentum
equation.

We must mention that the applicability of FFE to pulsars
can be questioned [10]. If charges are not freely available,
some regions of the pulsar magnetosphere might exist that
should be described by a vacuum rather than force-free
electrodynamics. While we cannot offer a real description
of the creation of the space charge, a simple energy esti-
mate shows that the system might find a way to put the
entire magnetosphere into the force-free regime. Indeed,
the pulsar luminosity is L� B2R6�4=c3, where B is the
magnetic field and R is the radius. The number density of
charged particles is n��B=�ce�. The associated energy
density is nmc2, and the associated power in particles is
Lp � nmc3R2. The ratio Lp=L�mc5=�e�3BR4� is a very
small number everywhere in the magnetosphere. Thus,
energywise, charges are indeed freely available. With
only a tiny fraction of the pulsar luminosity channeled
into the charge production, the star will be able to put the
entire magnetosphere into the force-free state. The real
mechanisms for populating the magnetosphere are of
course of great importance, but these probably include
complex interactions of the pulsar radiation, high-energy
electrons and positrons, the surface of the neutron star, the
large-scale and turbulent electromagnetic fields—should
be difficult to decipher. But FFE might well turn out to be a
good approximation to reality.
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