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Security bounds for key distribution protocols using coherent and squeezed states and homodyne
measurements are presented. These bounds refer to (i) general attacks and (ii) collective attacks where Eve
applies the optimal individual interaction to the sent states, but delays her measurement until the end of the
reconciliation process. For the case of a lossy line and coherent states, it is first proven that a secure key
distribution is possible up to 1.9 dB of losses. For the second scenario, the security bounds are the same as
for the completely incoherent attack.
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Quantum cryptography, that is, quantum key distribution
(QKD) followed by one-time pad, allows two honest par-
ties to interchange private information in a completely
secure way. Quantum states sent through an insecure chan-
nel are used to establish correlations between the sender,
Alice, and the receiver, Bob. Since the channel is not
secure, the eavesdropper, Eve, can interact with the sent
states. However, the no-cloning theorem [1] limits her
action: she cannot produce and keep a perfect copy of
the intercepted quantum state. After this correlation distri-
bution, Alice and Bob employ reconciliation techniques in
order to distill from their list of classical symbols perfectly
correlated and completely random bits about which Eve
has no information, that is, a secret key. This key is later
consumed for sending private information by means of the
one-time pad.

The first QKD protocol was introduced by Bennett
and Brassard in 1984 [2] and uses two-dimensional quan-
tum systems, or qubits, as information carriers. After it,
other QKD protocols were presented [3], using finite-
dimensional systems as well. More recently, it has been
shown that protocols based on continuous variables’ quan-
tum systems could offer an alternative to finite-
dimensional schemes, since they may achieve high repeti-
tion rates in the near future. The first of these protocols
employed squeezed states of light and homodyne measure-
ments [4,5]. Later, a QKD protocol using coherent states
and homodyne measurements was proposed in [6] and
experimentally demonstrated in [7].

The security of continuous variables’ QKD protocols
against any type of attack has already been proven, both
for the squeezed [5] and the coherent [8] cases. The bounds
derived in these works provide sufficient conditions for a
secure key distribution. There also exist restricted security
proofs (see, for instance, [4,6,9]) where Eve is assumed to
apply an incoherent attack; that is, (i) she interacts with the
sent states individually and in the same way and
(ii) performs incoherent measurements before the recon-
ciliation process has started. The corresponding bounds,
then, can be seen as necessary conditions for a secure key
distribution [10]. Unfortunately, there exists a clear gap
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between the security conditions for general and individual
attacks, and we are far from establishing necessary and
sufficient conditions for security.

In this work, we analyze the security of QKD protocols
employing coherent or squeezed states and homodyne
measurements. Using the techniques developed in
Refs. [11,12], we find new security bounds for these
schemes in the two following scenarios: first, we impose
no assumption on Eve’s attack and derive a simple condi-
tion for general security. Later, we assume that Eve applies
to the sent states the optimal individual interaction, but,
contrary to previous proofs, she delays her measurement
until the end of the reconciliation process. This type of
attacks is sometimes called collective. In this second sce-
nario, and for the case of a lossy line, we show that the
limits for key distillation coincide with those found for
incoherent attacks. To our knowledge, this is the first
situation in which it is proven that to let Eve delay her
measurement until the end of the reconciliation process
does not modify the security region.

By completing this work, we learn that similar results
have independently been obtained by Grosshans [13].

QKD protocols.—In all the considered protocols, Alice
sends to Bob squeezed or coherent states of light modu-
lated by a Gaussian probability distribution. These states
propagate through a quantum channel characterized by its
transmission T and excess noise ". Bob randomly mea-
sures one of two quadratures, X or P, and communicates
the chosen measurement to Alice. Alice and Bob obtain a
list of correlated real numbers from which the key has to be
extracted. There exists an entanglement-based protocol
that is completely equivalent to this prepare and measure
(PM) scheme [14]. Indeed, Alice’s preparation can be done
by measuring half of a two-mode squeezed state, of
squeezing parameter rA, as shown in Fig. 1. For instance,
Alice can measure both quadratures, XA and PA, after the
beam splitter of transmittivity TA � 1=2. The correspond-
ing PM scheme consists of Alice sending coherent states
with Gaussian probability distributions of variance hX2i �
hP2i � � cosh�r� � 1�=2. On the other hand, if TA � 1 and
Alice chooses randomly the measured quadrature, she is
5-1  2005 The American Physical Society
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FIG. 2. Tolerable losses as a function of the modulation for
protocols using coherent (solid line) and squeezed (dashed line)
states. The optimal value for both schemes is rA � 1:5.
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FIG. 1. The picture shows the considered protocols. After
Alice’s effective preparation using an entangled state, coherent
or squeezed states of light are sent to Bob, according to a
Gaussian modulation. Eve replaces the channel by the entangling
cloner of parameters rE and TE.
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effectively sending squeezed states of squeezing parameter
cosh�r� and modulated with a Gaussian distribution of
variance hX2i � sinh�r�2=�2 cosh�r��. This entanglement
description simplifies the theoretical analysis of the proto-
cols, but the obtained security bounds automatically apply
to the corresponding PM scheme.

It is also convenient at this point to introduce Eve’s
optimal individual attack, the so-called entangling cloner.
As proven in [9,15], the optimal way in which Eve can
‘‘simulate’’ the channel �T; "� is by combining into a beam
splitter of transmittivity TE � 1� T, the intercepted state
and half of a two-mode squeezed state. The squeezing
parameter, rE, has to be chosen such that �1� T� coshrE �
1� T � "T.

General security proof.—Recently, powerful techniques
for the analysis of general security proofs of any QKD
protocol have been presented in [11]. In any QKD scheme,
there is a tomographic process that partly characterizes the
insecure channel connecting Alice and Bob. It allows the
honest parties to evaluate their mutual information, IAB.
Moreover, it puts a bound on Eve’s knowledge: it has been
shown in [11] that, using the information collected during
this process, one can construct a secure reconciliation
protocol that allows one to extract

K � IAB � max

AB2R

S�
AB�; (1)

secret bits, where R is the set of quantum states consistent
with the measured probabilities (see [11] for more details).
Thus, this quantity represents a lower bound to the achiev-
able key rate, Kopt 	 K. For continuous variable systems,
if Alice and Bob monitor the channel by means of the first
and second moments of their data, the state 
AB of maxi-
mal entropy in (1) has to be Gaussian. A proof of this result
can be found in [16].
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A simple calculation shows that for the same measured
quadrature, the joint probability distribution of Alice and
Bob’s results is Gaussian with covariance matrix

�AB �
TA coshrA � RA

���������
TAT

p
sinhrA���������

TAT
p

sinhrA T coshrA � R coshrE

� �
; (2)

where R � 1� T and the same for RA. This gives the first
term in (1). The second term can be computed from 
E,
since S�
AB� � S�
E�. Eve’s state is a two-mode Gaussian
state, with covariance matrix �E � �0

E12,

�0
E �

T coshrE � R coshrA 0
0 coshrE

� �
: (3)

Using (2) and (3), it is straightforward to compute K as a
function of TA; rA; T; ".

For the case of a lossy line, " � 0, one can numerically
see that there exists an optimal squeezing roptA for both the
coherent and squeezed case (see Fig. 2). A possible reason
for this counterintuitive result may be thatK is known to be
a nontight bound to the optimal key rate [11]. This optimal
squeezing is the same for squeezed and coherent states,
roptA � 1:5, and defines a critical value for the tolerable
losses of approximately 1:7 and 0:83 dB.

As discussed in [11] it is possible to improve the bound
(1) by conditioning the privacy amplification process on a
classical random variable W (see [11] for more details),
decreasing Eve’s entropy. For the case of coherent states,
Alice and Bob can make public the value of the second
measured quadrature, instead of discarding it [13]. This
process does not modify Alice and Bob’s mutual informa-
tion but changes Eve’s entropy. The obtained critical trans-
mission, Tc, is now a decreasing function of the squeezing,
as expected. One can see that in the limit of high modula-
tion, rA ! 1,

Tc �
e2

e2 � 4
: (4)
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FIG. 3. Tolerable excess noise as a function of the losses for
reverse and direct reconciliation and squeezed (dashed line) and
coherent (solid line) states. All the curves have been computed in
the limit of very high modulation, rA ! 1.
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That is, the protocol using coherent states and homodyne
measurements is secure up to 1.9 dB of losses.

Collective attack.—As noted above, the bound (1) is
very useful because it does not make any assumption on
Eve’s attack, but is known not to be tight. Moreover, it does
not allow one to distinguish between direct and reverse
reconciliation protocols, where the (one-way) flow of in-
formation goes from Alice to Bob and vice versa. This
distinction does not play any role in QKD protocol using
finite-dimensional quantum systems, but is relevant for
continuous variables protocols [9]. Indeed, for the case of
a lossy line and incoherent attacks, the value of the channel
transmission limiting the security is equal to 1=2 for direct
reconciliation, while it goes to zero for reverse reconcili-
ation, for squeezed and coherent states [9].

In what follows, we consider an attack where the only
assumption is that Eve applies to the intercepted states the
optimal individual interaction. In the entanglement picture,
this corresponds to the case where Alice, Bob, and Eve
share N independent realizations of a quantum state
j�ABEi. This scenario is again represented in Fig. 1.
However, contrary to the usual incoherent attacks previ-
ously studied, Eve delays her measurement until the end of
the reconciliation protocol. Note that this attack is clearly
coherent, because Eve can globally measure her N quan-
tum states. Moreover, she can optimize her measurement
according to all the communication interchanged during
the whole reconciliation process.

After Alice and Bob’s measurements, the three parties
share N independent realizations of classical-classical-
quantum correlated variables A, B, and j Ei. Under the
N independent realizations assumption, it has been shown
in [12] that there exists a key distillation protocol achieving
a rate

K0 � IAB � ��A:E�; (5)

where � denotes the Holevo bound [17]. This security
condition is rather intuitive: if this quantity is positive,
the information Bob has on Alice’s symbols is larger
than the classical information accessible to Eve through
the quantum channel Alice-Eve. The results of [12] prove
that this advantage can, indeed, be exploited for distilling a
key. When considering reverse reconciliation, a similar
expression holds where ��A:E� is replaced by ��B:E�.

For a lossy line and direct reconciliation, the critical
transmission, Tc, limiting the security is again a decreasing
function of the squeezing rA. In the limit of very high
modulation one can see that Tc is the solution to the
equation

Tc�1� Tc��1� Tc � TA�2Tc � 1��

TA � Tc � 2TATc
� �1� Tc�

2: (6)

Remarkably, Tc � 1=2 is the searched solution 8 TA; i.e.,
we recover the same value as for the completely incoherent
attack [6]. Therefore, by increasing the modulation rA, the
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limiting losses’ value for a key distribution secure against
the considered collective attack tends to 3 dB.

A stronger result is obtained for reverse reconciliation.
In the limit of high losses, T � 1, the key rate (5) reads

K0 �
coshrA � 1

4

�
2�coshrA � 1�TA

1� TA�coshrA � 1�

� �coshrA � 1� log
�
coshrA � 1

coshrA � 1

��
; (7)

which is always positive. Thus, there is no loss limit for
reverse reconciliation protocols. But perhaps more surpris-
ingly, there is no need of high modulation or squeezing for
recovering the same limits as for the completely incoherent
attack. That is, a protocol using coherent states and any
modulation is secure for all line transmissions, even if Eve
is assumed to delay her measurement until the end of the
whole reconciliation process.

Concerning the amount of excess noise the protocols
tolerate, this is shown in Fig. 3. For squeezed states, it is
always more convenient to employ reverse reconciliation
techniques. For the case of coherent states, direct recon-
ciliation turns out to be more resistant against excess noise
up to a channel transmission of � 0:65. Note that there
exist limiting values of the excess noise, "c, for which the
considered key rates are zero, independently of the modu-
lation and the losses. These values can be computed ana-
lytically. For coherent states and direct reconciliation, one
has that "c is the solution to the equation

1

1� "

� ������������
1� "

p
� 1������������

1� "
p

� 1

� �������
1�"

p

� e2 (8)

that gives "c � 0:8, while for reverse reconciliation
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"c �
1

2

� ���������������
1�

16

e2

s
� 1

�
� 0:39: (9)

In the case of squeezed states, the critical noise is equal to
2=e � 0:7 for both reconciliation protocols.

Concluding remarks.—In this work we have applied the
recent security proofs of Refs. [11,12] to QKD protocols
using coherent and squeezed states and homodyne mea-
surement. It has to be clear that the obtained results provide
lower bounds to the achievable secret key rate. Thus, they
represent sufficient conditions for key distillation for the
studied scenario (and assumptions).

The first of the analyzed conditions is very powerful
because it does not make any assumption on the eaves-
dropping attack. For a lossy line and coherent states, it has
been shown here that a secure key distribution is possible
up to 1.9 dB of losses. Existing proofs of security work up
to 1.4 [8] and 1.6 dB [5] of losses. Thus, our results slightly
improve the known region of general security, without
requiring any squeezing.

The second type of bounds does not refer to the most
general situation, since Alice, Bob, and Eve are assumed to
share N linearly independent copies of a quantum state
j�ABEi. We have considered the case where Eve applies the
optimal individual interaction [14,15] to any sent state.
Therefore, in this first step of her attack, Eve is assumed
to introduce no correlations among the quantum states
shared by Alice and Bob. The bounds obtained in this
scenario cannot be seen as proofs of general security.
However, it is now possible to distinguish between direct
and reverse reconciliation, a relevant issue for continuous
variables quantum cryptography. Remarkably, the obtained
bounds turn out to be the same as for the fully incoherent
attack. The case of reverse reconciliation is perhaps more
surprising, since this is true for any value of Alice’s modu-
lation. As far as we know, this is the first situation in which
it is proven that allowing Eve to delay her measurement
does not give her any significant advantage (see also
[13,18]).

We conclude with a brief comment on theN independent
copies assumption required for the bound (5). Our results
suggest that the only possibility left to Eve that could
modify the security bounds for the fully incoherent attack
would be to introduce correlations among the different
copies of the states. Does this fact provide any improve-
ment on her attack? As discussed in what follows, one
could expect this not to be the case. After some channel
tomography, Alice and Bob know to share a state 
�N�

AB such
that any single copy is a state 
AB 2 R, consistent with
their measured probabilities. They should assume that Eve
has tried to be as correlated as possible to their state. Since
the global state is pure, this means that Eve has optimized
the entanglement of j��N�

ABEi over the splitting AB� E.
Thus, she has maximized the entropy of entanglement
[19] of j��N�

ABEi, i.e., the entropy of the local state 
�N�
AB ,
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subject to the constraint that the single-copy state is 
AB.
This maximization naturally leads to the N independent
copies assumptions, since S�
�N�

AB � � NS�
AB� � S�
�N
AB �.

Although far from being a proof, this simple argument, as
well as Eq. (1), suggests that the best attack could consist
of Eve preparing N copies of the most entropic state. If this
was true, the bounds derived from (5) would hold and
provide a necessary and sufficient condition for a secure
QKD over a lossy line using coherent (or squeezed) states
and homodyne measurements.
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