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We present here an information theoretic study of Gaussian collective attacks on the continuous
variable key distribution protocols based on Gaussian modulation of coherent states. These attacks,
overlooked in previous security studies, give a finite advantage to the eavesdropper in the experimentally
relevant lossy channel, but are not powerful enough to reduce the range of the reverse reconciliation
protocols. Secret key rates are given for the ideal case where Bob performs optimal collective
measurements, as well as for the realistic cases where he performs homodyne or heterodyne measure-
ments. We also apply the generic security proof of Christiandl et al. to obtain unconditionally secure rates

for these protocols.
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Over the past few years, quantum continuous variables
(CV) have been explored as an alternative to qubits for
quantum key distribution (QKD) [1-7]. More specifically,
protocols using coherent states and homodyne [1,2,8] or
heterodyne [3] measurements have been proposed and
experimentally demonstrated [9,10]. Relying on technolo-
gies allowing much higher rates than allowed by the single
photon detectors used in qubit based QKD, those protocols
are the only ones which could allow key rates in the GHz
range in the foreseeable future.

However, the security proofs of these new protocols are
not yet as strong as the ones of the qubits-based protocols:
they are almost all limited to individual or finite-size [11]
attacks. To our knowledge, the only unconditional security
proofs of CV QKD protocols are [6,12,13], only the latter
studying coherent-states based protocols. These proofs all
rely on specific suboptimal key extraction procedures, and,
for each case, it is difficult to separate the effects of the
technical inefficiencies of the encoding scheme from the
more fundamental effect of the possibility of real attacks of
Eve—the eavesdropper.

In this Letter, we study the effects of a Gaussian collec-
tive attack on the key rate of CV QKD protocols based on
the Gaussian modulation of coherent states [1-3] sent
through a lossy channel. In these attacks, Eve uses a
Gaussian unitary to interact with each of the transmitted
pulse and stores her ancillas in a quantum memory. She
performs then a collective measurement on her ancillas
after Alice and Bob—the partners performing QKD—
have used the public classical channel to fulfill the
protocol.

After introducing the notation used in this Letter, we
recall the values of various information theoretic quantities
for Gaussian states. Then, we compute the secret key rate
which can be achieved using direct reconciliation when
Bob is allowed to do collective, heterodyne, or homodyne
measurements. Those results are then extended to reverse
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reconciliation protocols and compared with the uncondi-
tionally secure rates obtained from the generic security
proof of Christiandl et al. [4].

While completing this work, we learned Navascués and
Acin used very similar techniques to study the security
bounds of these protocols [14].

Notations.—In all the QKD protocols discussed in this
Letter, Alice sends n Gaussian modulated coherent states
through a lossy channel of transmission 7.

Bob then makes measurements on the pulses he receives.
It can be an optimal collective measurement or, more
realistically, a series of heterodyne [3] or homodyne
[1,2,9] measurements. Alice and Bob then agree on a secret
key through a (direct or reverse) reconciliation procedure.
We are interested in the asymptotic key rates obtained at
the limit n — oo.

In the following, A refers to the quantum state of the
light pulse prepared by Alice, B and E to the one received
by Bob and Eve. X refers to the (classical) value of Alice’s
modulation and Y to the one of Bob’s measurement. For
instance, Hg denotes the Von Neumann entropy of the
density matrix pg at Bob’s side, while Hy denotes the
Shannon differential entropy of Bob’s measurements.

Alice modulates the two quadratures Qx and Py of the
coherent states she sends with random values following
Gaussian distribution. To simplify the analysis, we assume
this modulation to be symmetric in Q and P.

If Bob performs a heterodyne measurement, he gets the
two noisy measurements Q%' = Qg + Q. and Pt =
Pg + P i, Where Qi and P are two independent
Gaussian random variables of variance 1. (The units used
in this Letter correspond to a unity variance of the vac-
uum.) If he performs a homodyne measurement, he per-
fectly measures one quadrature—say, 0 —and obtains no
information on the other—P. One has therefore Q}\‘fm =
Qg and P}\‘("m = P (or, of course, the symmetric case,
where P%™ = Pg and Q%™ = Q,ise)-
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The lossy channel is modeled by a beam splitter of
transmittivity 7 and reflectivity 1 — T, the reflected beam
being given to Eve. In the equivalent entanglement-based
scheme [15], this attack gives Eve the purification of the
mixed state pa shared by Alice and Bob. Eve then per-
forms a collective measurement on her part of the purifi-
cation, after Alice and Bob’s classical communication has
occurred. As shown below, this attack is more powerful
than the ones studied in [1-3,9,11]. However, this attack
model is not generic in two aspects.

First, the channel model itself is not generic, since we
restrict ourselves to the lossy channel and omit considering
nonzero added noise and non-Gaussian attacks. This re-
striction is only due to brevity consideration and will be
lifted in a longer article [16], which will also contain a
study of squeezed states protocols. Of course, in an experi-
ment, the amount of added noise has to be measured by
Alice and Bob through some sampling and is never exactly
zero. They would thus have to use the more general results
of [16].

A more fundamental restriction comes from the fact that
we suppose Alice and Bob share a state of the form pRg. In
other words, we restrict Eve to individual attacks on the
channel, even if she is allowed to make collective mea-
surements on the ancillas obtained through these attacks.
This restriction is lifted at the end of this Letter, where we
apply the generic security proof [4] that does not rely on
any assumption about Eve’s attack.

Entropies and mutual information.—Let Vy_ (Vp,) be
the variance in the Q quadrature (P quadrature) of the
Gaussian state pg. Since squeezing is a reversible opera-
tion, it does not alter the Von Neumann entropy of pg,
which is an increasing function of Vg := m [17]:

_ Vetlq Vetl _ Vg—1q Vg1
Hg = &—log%; 5—log=2;

= 10gVBz+l + VBz_l IOgt}%E‘ (1

The logarithms in the above expression should be taken in
base 2 if one wants the result in bits, or in base e if one
wants it in nats. For strong modulation (Vg >> 1), one uses
the Taylor expansion

Hg = logVg + logé + @(VLB).

Let Vy, and Vy, be the variances of Bob’s two orthogo-
nal quadrature measurements. The Shannon differential
entropy Hy is simply the logarithm of Vy := /V Vp,,
up to an arbitrary additive constant [18], which can be set
to 0:

HY = IOgVY. (2)

The rate of common information Alice and Bob can
extract from their classical values is given by the mutual
information [18]

Ix.y ‘= Hy — Hy)x = Hx + Hy — Hyy.

If Bob uses a heterodyne detection, which adds a unit of
noise, V{}et = Vg + 1. Since a coherent state sent through a
lossy channel stays a coherent state, the conditional vari-
ance are Vgx = 1 and V$T§( = Vgx + 1 =2. One has
therefore

I = log"etL 3)

If Bob is allowed to make arbitrary measurements on the
pulses, the information they share is then given by the
Holevo information [19,20]

Ixg ‘= Hg — Hpx,

which is attained by collective measurements. Since Bob
receives pure (coherent) states, Hgx = 0 and

Ixe = H = Iy + *o-tlogr @)

If Vg > 1, one has
Ixg = L}, + loge + @(VLB). (5)

Therefore, by using heterodyne detection instead of the
optimal collective measurement, Bob loses an amount of
information up to loge (i.e., 1 nat = 1.44 bits) per pulse.

Direct key distribution.—To attain the rate Iy.y, Alice
and Bob can use random codes of size exp(nlx.y), where
the basis of the logarithms and the exponential are the
same. Devetak and Winter have recently shown [21] that
Alice can divide this code into privacy amplification sub-
sets of size close to exp(nfy.g). This allows Alice and Bob
to generate a secret key through a direct reconciliation
procedure using only forward communication. This key
can be generated at a rate asymptotically close to

Al = Ixy — Ixg. (6)

If Bob makes the optimal collective measurement, sub-
stituting I)C(O{} = Ix.;g in the above expression and using
Eq. (4) [with Vg =TVa+1—Tand Vg = (1 = T)V, +
T] gives us the attainable direct reconciliation key rate. At
the high modulation limit, where V5 > 1/T;1/(1 — T),
one has [22]

AL = logi Ty + O([4+ 151k

This limit is the same as the one found assuming Bob and
Eve are restricted to heterodyne measurements [3] (indi-
vidual attacks).

Direct heterodyne key distribution.—Equation (6) can
be applied to the case where Bob uses heterodyne detection
[3]. We have then a lossy channel of transmission T
between Alice and Bob and another lossy channel of trans-
mission 1 — T between Alice and Eve. We can therefore
use Egs. (3) and (4) to expand this expression into

1+]/VE
1-1/Vg*

Aghet = logyetl —

I
verT — ve—i2log

As shown by Eq. (5), Eve can gain up to 1 nat per pulse by
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using collective measurement. The best situation for Alice

and Bob is the high modulation limit Vp > ;= T, where

AL = logrtr + (9<(1 T)Va )

It is therefore not possible to perform direct heterodyne
QKD if the channel transmission is smaller than 70 =
e/(e + 1) = 0.73. These maximal losses of 1.4 dB imply a
shorter range for this protocol than the 3 dB deduced if one
considers only individual attacks or if Bob uses optimal
collective measurements.

Direct homodyne key distribution.—Surprisingly, the
original proposal [1] of direct homodyne QKD is more
robust. For those protocols, Alice modulates both quad-
ratures O and P with the same variance V, and Bob
chooses randomly one quadrature to measure (say, Q).
After the public disclosure of this quadrature choice, the
information on P is useless and can be forgotten by Alice.
The state she has sent to Bob is therefore a mixture of
coherent states with a given value of Q but different values
of P. The mixture received by Bob is a Gaussian mixed

state with variances V}é"‘l“x 1 and Vf;orl‘;( Vg; therefore

Vg‘l’)‘? = ./Vg. When /Vg > 1, one has [22]

Higie = logy/Ve + logs + O( ).
Hip™ = logVg + logs + O3 ), ™
Ihom = 110gVB + (9( ) = I;I(O\r(n + @(ﬁ>

Thus, collective measurements give only a small amount
(of order 1/./Vg) of supplementary information over ho-
modyne detection; the noise in the useless quadrature (P)
plays a crucial role in this.

Eve receives similar mixed states, and, in the strong
modulation regime [V > 1/T;1/(1 — T)], one has

A1z o+ Of 3+ 7o)

The advantage given to Eve by collective measurements is
therefore of order 1/./V and can be arbitrarily reduced by
Alice’s use of a strong enough modulation. Therefore,
unlike the heterodyne protocol, the key rate of the direct
homodyne key distribution protocol remains almost un-
changed when compared to [1], where Eve was restricted
to (postponed) homodyne measurements. More specifi-
cally the range limit of this protocol stays at 3 dB (50%)
of losses, whether one considers collective measurements
or not.

Reverse key generation.—For symmetry reasons, back-
ward communication is needed to distribute a quantum key
beyond this 3 dB limit. Either postselection [8,12] or a
reverse reconciliation procedure [2,3,9] can be used for this
purpose. In the latter case, the attainable rate is given by
(21]

Alq = Ixy — Ive.

If Bob performs an optimal collective measurement, one
has to replace the above expression by Ix.g — Ig.g, where
Ig.g is the quantum mutual information

IB;E = HB + HE — HBE'

Since the joint state pgg is obtained by the (reversible)
mixture of pa and a vacuum state in the mode N, one has
Hgg = Hpy + Hy = Hp. At the high modulation limit
[Vao > 1/T;1/(1 — T)], one has therefore

Igg = logVp +1ogT(1 — T)% + (9({% + ﬁ}%\)
AISN = Jog s + (9<{ —T}VIA>

which is, like in the direct case, very close to the result
obtained with heterodyne detection in an individual attacks
scenario [3]. For strong losses (1/Vy < T < 1), this ex-
pression becomes

A" = Tloge + O(T? + 7).

Reverse heterodyne key generation.—In the heterodyne
case [3], which is symmetric in Q and P, one has

het (QeO¥Y _ 2-T+T1/V,
V PelY VQEIY - VQE Vhe\t{ - T+(27T)/\¢A’
phet — 1+1/Vy 4 (1=T)(1=1/Vp) 1+1/Va

ElY 10gT+(27T)/VA T+0—1)/Va logr=p= 1/Va)y

When Vj > 1/T, this expression becomes
His, = log!5" — Jlog(1 = T) + O(7;).

If one also has Vp > 1/(1 — T) [22],

= logVa +logs(1 = T) + (9<(1 T>VA>
1{1(?[ log§TVa + glog(1 = T) + @<{ ﬁ%)
Alhet 1 logl — loge + (9({ T}VIA>

As in the direct case, Eve gains a finite amount of infor-
mation by using collective measurement instead of hetero-
dyne measurements. However, this gain is not sufficient to
reduce the range of the protocol, which still works for
arbitrary long ranges. For strong losses (1/Vy < T <
1), the rate is twice smaller than the collective measure-
ment rate
AL = ITloge + O(T? + ;) = JAIS.

Reverse homodyne key generation.—In the homodyne

case [2], similar calculations give us

hom 1 — — _

Vorly = m5a=n/ve pey =VE=(0-T)Va+T,
hi _ 1-T+T)/V,

VE(l)\I;l - VAT+(17T)/VAA'

In the large modulation limit [V > 1/T;1/(1 — T)] [22],
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vie = a1+ o[k + k)

HEY = 3log!ZlVp + log§ + @(L L )

TVa (I—-T)Va

g = 1log(1 — T)TVp + (o(

Arem = Llog Lz + @(TVA ‘,—(1—77:)VA>'

As for the direct case, the use of homodyne detection by
Alice and Bob allows them to reduce the advantage given
to Eve by coherent measurement to an arbitrarily small
amount and to attain a secret key rate arbitrarily close to
the one given in [2], where only individual attacks were
considered. In the strong losses regime (1/Va < T < 1),
the rate obtained is almost equal to the one obtained in
heterodyne measurements:

Ar™ = 1T loge + O(T? + 7i) = AL

The (almost) factor of two advantage in the rate given by
heterodyne measurement at low losses cancels for strong
losses. The use of the homodyne setup is also attractive in
experimental QKD because of the sensitivity of the current
continuous variable reconciliation algorithms [23,24] to
the signal-to-noise ratio.

Unconditional security.—One can also compare these
rates to the unconditionally secure rates S obtained from
the generic security proof of Christiandl et al. [4]

S = Ix.y — HE, (8)

which is independent of the reconciliation direction. Since
Alice sends coherent states, as shown above Hg = Ix.g and
this unconditional secure rate is equal to the direct recon-
ciliation rate AIZM (AI') when Bob makes collective
(heterodyne) measurements, regardless of the actual rec-
onciliation direction (direct or reverse).

The role of the unmeasured (P-)quadrature modulation
makes the homodyne case different. If it decreased the
efficiency of the collective attacks considered above, it
increases the entropy Hg, decreasing the secure rate S
given by Eq. (8). However, giving the information about
this modulation to Eve could only decrease the secret rate.
Hg is then given by (7) and, in the strong modulation
regime [V > 1/(1 — T)], Eq. (8) becomes [22]

ghom = %loglij2 + @<4/(11T)VA>'
Unconditionally secure homodyne QKD is therefore pos-
sible if the channel transmission T is greater than 779m =
e?/(e* + 4) = 0.65 (1.9 dB).

Conclusion.—We have quantified the effect of collective
attacks on coherent-states based CV QKD protocols
through a lossy channel. These attacks are strictly more
powerful than the individual attacks studied before.
However, if Bob makes homodyne measurements, the
advantage given to Eve by these attacks can be made
arbitrarily small if Alice uses a strong modulation. On

the contrary, if Bob uses heterodyne measurement, these
attacks give a finite advantage to Eve. For comparison, we
have computed the key rate in the (theoretical) optimal
case, where Bob performs a collective measurement.

We also have applied the generic security proof of
Christiandl et al. [4] to compute an unconditional secure
rate for these protocols. This rate is usually lower than the
one obtained above, but, this bound being known not to be
tight, this does not rule out the possibility for the consid-
ered collective attacks to be optimal.
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