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Quantum Correlations and Secret Bits
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It is shown that (i) all entangled states can be mapped by single-copy measurements into probability
distributions containing secret correlations, and (ii) if a probability distribution obtained from a quantum
state contains secret correlations, then this state has to be entangled. These results prove the existence of a
two-way connection between secret and quantum correlations in the process of preparation. They also
imply that either it is possible to map any bound entangled state into a distillable probability distribution
or bipartite bound information exists.
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Entanglement and secret correlations are fundamental
resources in quantum information theory and cryptogra-
phy, respectively. They both share the property of being
monogamous [1], in the sense that the more two parties
share quantum or secret correlations, the less they are
correlated to the outside world. This fact suggests that
these two concepts are closely related.

In the past years, several authors analyzed the link
between quantum and secret correlations. Already in
1991, Ekert [2] proposed a cryptography protocol whose
security was based on the violation of a Bell inequality [3].
More recently, this link has been exploited for proving the
security of most of the existing quantum cryptography
protocols, e.g., the Shor-Preskill proof [4] of the security
of the Bennett-Brassard 1984 scheme [5]. Further relations
were later analyzed in [6,7]. A qualitative equivalence
between entanglement and key distillability has been
shown in the cases of two-qubit and of one-copy distillable
states [8]. There even exist quantitative analogies: the rates
of entanglement and of secret-key distillability for some
one-way communication protocols are equal [9]. All these
results suggested the existence of a correspondence be-
tween entanglement and secret-key distillability, in the
sense that a quantum state could be transformed into a
private key if and only if it was distillable. However, the
recent results of [10] have proven this statement to be false:
there are nondistillable quantum states, also known as
bound entangled, that are useful for establishing a secret
key.

Up to now, the connection between quantum and secret
correlations has mainly been analyzed from the point of
view of distilling or extracting these resources from quan-
tum states. However, very little is known about the process
of preparation, i.e., about the resources required for the
formation of a quantum state or a probability distribution.
Recall that a state of a composite quantum system is
entangled if and only if it cannot be prepared by local
operations and classical communication (LOCC), that is,
iff it requires truly quantum correlations (i.e., classical
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correlations are not sufficient for its preparation). In a
similar way, for a given probability distribution, one may
wonder what the cost of its distribution is, in terms of secret
bits, when only classical resources are used. Following
[11], we say that a probability distribution contains secret
correlations if and only if it cannot be distributed using
only local operations and public communication, that is, iff
it requires the use of a private channel (i.e., public com-
munication is not sufficient for its distribution).

In this work we study those probability distributions
derived from single-copy measurements on bipartite quan-
tum systems. We prove that (i) all entangled states can be
mapped by single-copy measurements into probability dis-
tributions containing secret correlations and (ii) if a proba-
bility distribution containing secret correlations can be
derived from a state �AB, then �AB has to be entangled.
Accordingly, in strong contrast to the case of distillability,
in the preparation process there exists a one-to-one relation
between secret and quantum correlations. As far as we
know, this result represents the first two-way connection
between these two resources, entanglement and secret
correlations. In particular, our results imply that all bound
entangled states are useful to distribute secret correlations
[12], a task that is impossible using only LOCC. But let us
start reviewing some basic facts about entanglement and
secret correlations.

In the modern theory of quantum correlations, the usual
scenario consists of two parties, Alice and Bob, sharing a
quantum state �AB in a system CdA � CdB . The impurity of
the state is due to the coupling to the environment. The
basic unit of entanglement is the entangled bit, or ebit,
represented by a singlet state or a maximally entangled
state of two qubits, j��i � �j01i � j10i�=

���
2

p
. Given �AB,

one would like to know (i) how many ebits are required for
its preparation, and (ii) how many ebits can be extracted
from it by LOCC. These two fundamental questions define
the separability and distillability problems. Associated
with them, there exist two entanglement measures, the
so-called entanglement cost, Ec [13], and distillable entan-
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glement, ED [14]. Those states for which Ec > 0 require
ebits for being prepared; they contain quantum correla-
tions. Separable states can be prepared by LOCC [15], so
Ec � 0.

Moving to secret correlations, the usual scenario con-
sists of two honest parties, Alice and Bob, and an eaves-
dropper, Eve, having access to independent realizations of
three random variables, X, Y, and Z, characterized by a
probability distribution P�X; Y; Z�. Alice and Bob’s sym-
bols have some correlations, and they are also partially
correlated with Eve. The basic unit is now the secret bit,
that is, a probability distribution P�X; Y; Z� � P�X; Y�P�Z�
where X and Y are binary and locally random, P�X � Y� �
1, and Eve’s symbols are decoupled from Alice and Bob’s
result. Similarly as above, given P�X; Y; Z�, one can look
for the amount of secret bits (i) needed for its preparation
and (ii) that can be extracted from it by local operations and
public classical communication [6,7]. The corresponding
measures are the so-called information of formation,
Iform�X;YjZ�, proposed in [11] as the classical analog of
Ec, and the secret-key rate, S�X;YjjZ�, introduced in [16].
As for the entanglement scenario, a positive information of
formation means that the correlations P�X; Y; Z� cannot be
distributed using only local operations and public commu-
nication—secret bits are needed. Therefore, P�X; Y; Z�
contains secret correlations iff Iform�X;YjZ�> 0 [12].

All these measures, EC and ED as well as S�X;YjjZ� and
Iform�X;YjZ�, have been defined from an operational point
of view and are hard to compute. For our purpose, it is
necessary to have bounds on these quantities. In the case of
secret correlations, it is known that the so-called intrinsic
information, I�X;Y # Z�, provides a lower bound to the
information of formation [11] and an upper bound to the
secret-key rate [16],

S�X;YjjZ� 
 I�X;Y # Z� 
 Iform�X;YjZ�: (1)

This function, originally introduced in [16], is defined as
follows: from P�X; Y; Z� one can compute for any Z the
conditioned probability distribution P�X; YjZ� �
P�X; Y; Z�=P�Z�. The total mutual information between
X and Y conditioned on Z, I�X;YjZ�, is the mutual infor-
mation of P�X; YjZ� averaged over all Z. The intrinsic
information then reads

I�X;Y # Z� � min
Z! �Z

I�X;Yj �Z�; (2)

the minimization running over all the channels Z ! �Z.
In order to link quantum and secret correlations, we need

two more remarks.
First, the adversary, Eve, appears in the quantum case in

a less explicit way than in cryptography, where her pres-
ence is essential for the problem to be meaningful. If Alice
and Bob share a state �AB, the natural way of including Eve
is to add a third system purifying it, in such a way that the
global state of the three parties is j�ABEi 2 CdA � CdB �
CdE and �AB � trE�j�ABEih�ABEj�. Thus, all the environ-
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ment is conservatively associated with the adversary.
Given �AB, j�ABEi is uniquely specified up to an irrelevant
unitary transformation on Eve’s space [17].

Next, measurements are required for mapping the po-
tential quantum correlations into probability distributions.
We denote by MZ the positive operators defining Eve’s
measurement, where

P
ZMZ � 1E, and in a similar way

MX and MY define Alice and Bob’s measurements. Thus,
given a state j�ABEi and measurements for each party, the
corresponding probability distribution is

P�X; Y; Z� � tr�MX �MY �MZj�ABEih�ABEj�; (3)

while Alice and Bob’s probability distribution is

P�X; Y� �
X

Z

P�X; Y; Z� � tr�MX �MY�AB�: (4)

Notice that the map (3) is not one to one, since there may
be many choices of measurements and states leading to the
same probability distribution. And even if the measure-
ments by Alice, Bob, and Eve are fixed, there may be many
states compatible with Eq. (3). Therefore, P�X; Y; Z� to-
gether with MX, MY , and MZ define equivalence classes in
the space of states j�ABEi [18].

We have now introduced all the main ideas and can
concentrate on the case where Alice and Bob perform local
measurements MX and MY on an unknown state �AB.
Assume that they can infer from their data P�X; Y� that
the state �AB is entangled. Recall that the detection of
entanglement through local measurements can always be
done by means of an entanglement witness W, i.e., by
measuring an observable in CdA � CdB such that for all
product states jabi, habjWjabi � 0. Recall furthermore
that all operators can be decomposed into a linear combi-
nation of product operators: W�cXY� �

P
X;YcXYMX �MY .

Accordingly, whenever a linear combination of Alice and
Bob local measurements provides an entanglement witness
W, they can compute its expectation value from their data:
tr�W�cXY��AB� �

P
X;YcXYP�X; Y�. And whenever this ex-

pectation value is negative, Alice and Bob can conclude
that the state �AB they share is entangled. In such a case we
say that the probability distribution, P�X; Y�, for the mea-
surements MX and MY is incompatible with any separable
state. Actually, it was proven in [18] that Alice and Bob can
discard any separable state as the origin of the observed
correlations iff they can construct from their data an en-
tanglement witness such that tr�W�cXY��AB�< 0. We can
now state our main result.

Let j�ABEi be a quantum state shared by Alice, Bob, and
Eve. The following two statements are equivalent:
(1) Alice and Bob’s state, �AB, is entangled. (2) There exist
measurements by Alice and Bob, MX and MY , such that for
any measurement by Eve, MZ, the corresponding proba-
bility distribution P�A;B; E� (3) contains secret correla-
tions. This result is indeed a corollary of the following
theorem.
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Theorem.—Let P�X; Y� be a probability distribution
shared by Alice and Bob after measuring MX, MY on a
unknown state. Then, (i) P�X; Y�, for the measurements
MX and MY , is incompatible with any separable state (4) if
and only if (ii) for all the purifications j�ABEi, compatible
with the observed data (4), and for all measurements MZ by
Eve, P�X; Y; Z� contains secret correlations.

Proof: For the �i� ) �ii� part, assume that Alice and Bob
detect the entanglement of the unknown state �AB used for
the correlation distribution by means of an entanglement
witness W�cXY� �

P
X;YcXYMX �MY built from their mea-

surements, i.e., tr�W�AB�< 0. The proof proceeds by con-
tradiction. Assume that there is a global state j�ABEi and a
measurement by Eve, MZ, such that the corresponding
probability distribution P�X; Y; Z� � tr�MX �MY �
MZj�ABEih�ABEj� admits P�X; Y� as marginal, but does
not contain any secret correlations. This implies I�X;Y #
Z� � 0 for P�X; Y; Z�; hence there is a channel P� �ZjZ� such
that I�X;Yj �Z� � 0, i.e.,

P�X; Yj �Z� � P�Xj �Z�P�Yj �Z�: (5)

Denote by �Z the state shared by Alice and Bob when
Eve’s result is Z,

�Z �
1

P�Z�
trE�1 �MZj�ABEih�ABEj�; (6)

where P�Z� � tr�1 �MZj�ABEih�ABEj�, and by � �Z the
state after Eve’s classical processing

� �Z �
1

P� �Z�

X

Z

P�Z�P� �ZjZ��Z; (7)

where P� �Z� �
P

ZP�Z�P� �ZjZ� and the positive operators
M �Z �

P
ZP� �ZjZ�MZ define another measurement, sinceP

�ZM �Z � 1E [19]. From Eq. (5) we have that 8 X; Y,

t r�MX �MY� �Z� � tr�MX�A �Z�tr�MY�B �Z�; (8)

where �A �Z (�B �Z) denotes the state after tracing Bob (Alice)
out in � �Z. Define the separable state �S

AB �
P

P� �Z��A �Z �
�B �Z. Using �AB �

P
ZP�Z��Z �

P
�ZP� �Z�� �Z, it follows

from Eq. (8) that

t r�W�AB� � tr�W�S
AB�< 0; (9)

which is a contradiction with the assumption that W is an
entanglement witness. Therefore, Iform�X;YjZ� � I�X;Y #
Z�> 0 for all the states j�ABEi and all Eve’s measure-
ments. This concludes the �i� ) �ii� part of the proof.

For the �ii� ) �i� part, we proceed again by contradic-
tion (see also [6,18]). Assume that there exists a separable
state �AB compatible with the observed data P�X; Y�. Since
�AB is separable, it can be expressed as

�AB �
XnZ

Z�1

P�Z�jaZbZihaZbZj: (10)

Consider the purification
02050
j�ABEi �
XnZ

i�1

����������
P�Z�

p
jaZbZijZi; (11)

where j�ABEi 2 CdA � CdB � CnZ and jZi are nZ ortho-
normal vectors. If Eve applies the measurement defined by
MZ � jZihZj, we have that for all Alice and Bob’s mea-
surements

P�X; YjZ� � tr�MX �MY jaZbZihaZbZj�

� tr�MXjaZihaZj�tr�MYjbZihbZj�

� P�XjZ�P�YjZ�: (12)

Now, it is clear that these correlations could be generated
as well using public communication. The random variables
X and Y are locally generated according to one of the nZ
probability distributions P�XjZ� and P�YjZ�. The choice
among these probability distributions is made according to
the probability distribution P�Z�. Alice and Bob correlate
this choice through the message Z that one of the parties
generates and sends to the other through a public channel
(or a source to both parties). This classical message is
accessible to Eve. No secret bits are required for this
distribution, thus Iform � 0, which contradicts statement
(ii). Hence there is no separable state �AB compatible
with the observed data P�X; Y�. �

Corollary.—Consider an entangled state �AB �
trE�j�ABEih�ABEj�, where j�ABEi denotes the global state
including Eve. There always exist measurements by Alice
and Bob mapping this state into a probability distribution
containing secret correlations, independently of Eve’s
measurement.

Proof: This easily follows from the previous theorem
together with two known results: (i) any entangled state is
detected by an entanglement witness [20], and (ii) any
entanglement witness can be decomposed in terms of a
tensor product of operators defining local measurements;
i.e., it can be computed by local measurements [21]. �

These statements prove the announced ‘‘if and only if’’
connection between secret and quantum correlations in the
process of preparation. Note that all the proofs have been
derived using single-copy measurements. This fact allows
one to easily translate our conclusions from entanglement
based to prepare and measure protocols using the same
ideas as in [22] (see also [18]). In the following lines,
several implications of the results are discussed.

First, the presented connection is as strong as it could be.
Consider that Alice and Bob are connected by an unknown
quantum channel (share an unknown state). As soon as
their measurement outcomes detect that the channel allows
one to distribute entanglement, they know to share secrecy,
no matter what Eve does [12]. Alice and Bob may not have
enough information from the obtained measurement re-
sults to completely determine their channel. Still, if their
data are only compatible with entanglement, the observed
distribution contains secret bits. On the other hand, if the
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measured correlations are compatible with a separable
state, no secret key can be extracted from them [18].
Indeed, from the observed data Alice and Bob cannot
exclude that I�X;Y # Z� � 0, which implies S�X;YjjZ� �
0. Thus, any entangling channel can be seen as a source of
privacy.

Next, all this discussion is independent of the distilla-
bility properties of quantum states. Indeed, the previous
corollary provides a systematic way of mapping bound
entangled states into a probability distribution containing
secrecy. An interesting open question is whether all these
probability distributions are distillable into a perfect key
(cf. [10]). It follows from our results that at least one of the
two following possibilities must be true [23]: (i) all bound
entangled states can be mapped into distillable probability
distributions, or (ii) there exist classical probability distri-
butions having nondistillable secret correlations. In this
case, they would provide examples of bipartite probability
distributions with bound information, the cryptographic
analog of bound entanglement conjectured in [6] (see
also [24]).

Finally, our results also shed light on what the differ-
ences between bound entangled states and the set of LOCC
operations are. It is known that these states do not improve
the fidelity of teleportation compared to LOCC [25]. On
the other hand, there are examples of bound entangled
states violating some inequalities for the variance of ob-
servables that are satisfied by separable states [26]. Moving
to secret correlations, there exist bound entangled states
that are useful for key distribution [10]. Here, it is proven
that all bound entangled states can be transformed into
probability distributions that, from the point of view of
its secrecy features, can never be established by LOCC.

To conclude, in this work we have shown the correspon-
dence between secret and quantum correlations in the
process of preparation. Given a probability distribution,
its formation using quantum resources needs entangled
states if and only if an alternative preparation using clas-
sical resources requires secret bits.
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