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Bistable biochemical switches are widely found in gene regulatory networks and signal transduction
pathways. Their switching dynamics are difficult to study, however, because switching events are rare, and
the systems are out of equilibrium. We present a simulation method for predicting the rate and mechanism
of the flipping of these switches. We apply it to a genetic switch and find that it is highly efficient. The path
ensembles for the forward and reverse processes do not coincide. The method is widely applicable to rare

events and nonequilibrium processes.
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Biochemical switches are ubiquitous in living cells.
These switches are networks of chemical reactions with
more than one steady state; flipping between these states
can occur due to stochastic fluctuations. Examples include
the lysis-lysogeny switch of phage A [1] and the lac re-
pressor of E. coli [2], as well as networks regulating the
cell cycle and developmental fate [3]. Synthetic genetic
switches have also been constructed in vivo [4,5].

Stochastic simulations [6,7] have an important role to
play in revealing the design principles underlying the
stability of these switches. However, these systems are
often very difficult to simulate in a brute-force manner.
This is because they can be extremely stable, showing few
or no flips during the simulation. For example, the phage A
switch flips spontaneously less than once in 107 bacterial
generations [8].

Biochemical networks are described by a set of chemical
reactions with given rate constants. These determine the
transition probabilities between different states. For many
simulations in condensed matter physics, the transition
probabilities satisfy detailed balance, leading to an equi-
librium steady state with phase space density related to an
energy functional. In contrast, biochemical networks usu-
ally lack detailed balance [9] and are out of equilibrium.
For these systems, the phase space density is not known
a priori, but is an output of the simulation. Commonly used
techniques for the simulation of rare events [10], such as
transition path sampling [11], are unsuitable because they
rely on knowledge of the phase space density. In this
Letter, we present the ‘“‘“forward flux sampling” (FFS)
technique that allows efficient simulation of rare but im-
portant events in biochemical networks. We apply the
method to a genetic toggle switch.

The FFS method generates the rare trajectories between
two stable steady states A and B in a ratchetlike manner. To
this end, it employs a series of nonintersecting interfaces in
phase space between regions A and B. A and B are defined
in terms of a parameter A(x) (x denotes all coordinates of
the phase space), such that the system is in region A if
A(x) = A4 and in region B if A(x) = Ag. The parameter A
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is also used to define the series of interfaces {A, ..., A,},
such that A; = A4 and A,, = Ap (see Fig. 1) [12]. Defining
the history-dependent functions 4, and hp such that h, =
1 and hg = 0 if the system was more recently in A than in
B, and vice versa, the rate constant k4 for transitions from
A to B is given by

i) P
AB — AL p(AglA)). (1)

kap =

Here, ®, p is the flux of trajectories that cross Ag, coming
from A (i.e., with iy = 1). The overbar denotes a time
average. P(A;4|A;) is the probability that a trajectory that
comes from A and crosses A; for the first time will sub-
sequently reach A, before returning to A. Thus the total
flux from A to B is the flux from A to A;, multiplied by the
probability that a trajectory reaching A; from A will arrive
in B without returning to A. P(Ag|A;) can be expressed as
the product of the probabilities of reaching each successive
interface from the previous one, without returning to A,
such that P(Agl|A;) = [T= P(Ai+114;) X P(Ag|A,).

In the FFS method, the parameter A is first chosen,
together with values for A4, Ag, and {A,,..., A,}. No
assumption is made about the reaction coordinate: the
choice of A affects only the efficiency of the calculation.
It is also convenient to define a series of ‘“‘subsurfaces”

{)\El), e )\Em")}, in between each pair of surfaces A; and

Ai+1» such that )\5-1) = )A; and )\Em") = Ait1-

A2
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FIG. 1. The first (a) and second (b) stages of the FFS method.
The distribution of points at the interfaces depends on the history
of the paths, as illustrated by the dashed lines in (b).
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In the first stage of the algorithm, a simulation is carried
out in region A. After equilibration, A(7) is monitored
during a run of length 7. Whenever the trajectory crosses
the surface A;, coming from A, a counter Ny is incre-
mented. If Ny is less than a user-defined number C,, the
phase space coordinates of the system are stored and the
run is continued. After time 7', one is left with a collection
of C; points at A;, as well as an estimate of the flux
EA, \/ha =N +/T. This procedure is illustrated schemati-
cally in Fig. 1(a): crossings of surface A, that are labeled
with a black circle contribute to Ny and to the collection of
points at A;.

In the second stage of the algorithm [see Fig. 1(b)], M;
trial runs are generated for each surface A;. In each trial
run, a phase space point from the collection at A; is chosen
at random and used to start a run, which is continued until
the system crosses either A;;; or A4. The maximum A
value, A, achieved during this run is recorded, and

counters N{ for all the subsurfaces )\Ej) = A are incre-
mented by one. After M, trials, an estimate is obtained for
P()tgj)l)\i) =N//M;, for 1=j=m; [note that
P(AMIA) = 1 and P(A"™[A;) = P(A;111A)]. A new col-
lection of C;.; points at the surface A;;; has also been
generated: these are the end points of those trials which
make it to A;; . These points are then used for trial runs to
the next interface, and so on. Eventually Aj is reached, and

one is left with a series of histograms P(AY,|A,), for 1 <
Jj = m;and 1 =i = n. These are connected by fitting to a
polynomial to give a curve P(A|A,), the value of which at
A = Ag is P(Ag|A;). The rate constant k,p is obtained on
multiplying P(Ag|A;) by the flux ®, ,/h4 calculated pre-
viously [see Eq. (1)].

The interfaces allow FFS to cross the ‘“barrier” effi-
ciently even for systems with highly stochastic dynamics,
in contrast to other schemes [13]. FFS is not the first path
sampling method to use a series of interfaces in phase
space [12,14]. However, to our knowledge, it is the first
such method which does not require prior knowledge of the
phase space density. In the method of van Erp er al. [12],
this is required to propagate paths backwards in time. FFS
also differs from other approaches [14], in that it does not
assume that the distribution of phase space points at the
interfaces {A;, ..., A,} is equal to the stationary distribu-
tion of states: each point at interface i lies on a path which
originates in region A [see Fig. 1(b)]. We show below that
this is essential for the genetic switch.

k k,
24 = A, 2B=B8, Sk Sk
0+ A, =0A, O +B, =O0B, Sk k
0—0+A 0—0+B k
OA, — OA, + A OB, — OB, + B k
A—o B—o 0.25k

TI'% gene B

....... ‘BB’

FIG. 2. Reaction scheme for the genetic switch. Forward and
backward rate constants k; and k,, are identical for A and B.

We have applied FFS to a genetic toggle switch [15,16].
This could be regarded as a model for a switch recently
constructed in vivo [4], or a very minimal representation of
the phage A switch [1]. The switch consists of two
proteins A and B and their corresponding genes ‘A and
B (see Fig. 2). A and B form homodimers A, and B, which
can bind to the DNA (here labeled O). When A, is bound,
gene B is not transcribed, while B,, when bound, corre-
spondingly blocks transcription of gene A: thus A and B
mutually repress one another’s production. We consider
here the “‘exclusive” version of the switch, in which only
one dimer can bind to the DNA at any time (for example,
the operator regions of genes A and B might be over-
lapping [15]). The scheme is symmetric on interchanging
A with B and A with B (although the FFS method is
equally applicable to asymmetric switches, such as that of
phage A). All rate constants are relative to that for protein
production (k), so that the unit of time is k1. The volume
of the system is taken to be unity. Simulations were carried
out using the Gillespie algorithm [6], which is a kinetic
Monte Carlo scheme [17] that propagates numbers of
molecules in time according to the chemical master
equation.

Figure 3 shows the results of a ““brute-force’” simulation
of the switch. The difference A in the total copy numbers
of the two proteins, A = N — N, is plotted as a function
of time in Fig. 3(a), where Np = np + 2na, + 2nga,,
Ng = ng + 2ng, + 2ngg,, and n, denotes the number of
molecules of species . The probability distribution P(A),
shown in Fig. 3(b), shows that there are two steady states.
We define phase space region A by A =< —25, and B by
A = 25. The system flips stochastically between states
with hy =1 (hg = 0) and with hy =1 (hy = 0). The
rate constant k,p can be obtained by fitting the integral
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FIG. 3. (a) A as a function of time for a typical run.

(b) Probability P(A), calculated over a total time of 5 X 107%™ 1.
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TABLE I. FFS and brute-force results for f = EA,I/EA, P(Ag|Ay), and k4 [see Eq. (1)]. For all runs, A, = — A. The top three rows
show FFS results, averaged over ten runs, for various values of A, and numbers n of interfaces. The fourth row shows f, P(Ag|A;), and
kap = f X P(AglA,), evaluated using brute-force simulations of total length 9 X 10°k~!. The number in the bottom right-hand corner
is the brute-force result obtained by fitting F(r) as described in the text.

Ap n f/k X 1072 P(AglA)) X 1073 kap/k X 1077
30 16 2.98 + 0.01 32+0.1 9.5+0.3
25 11 1.211 = 0.007 7.8 0.3 9.5+0.3
20 10 0.282 + 0.002 33.7+0.8 9.6 +0.2
25 1.2112 *= 0.004 7.70 = 0.09 9.3 +0.1
9.4+02

F(t) = [ dt p(¢') of the distribution p(z) of times between
flips to the Poisson function F(¢f) = 1 — exp[—k4pt]. The
result is k45 = (9.4 = 0.2) X 10~ "k (total simulation time
9 X 10°k~1; 8808 flips).

We next recalculated k,p using FFS, taking A = A.
Several calculations were carried out using different values
of A4, Ag,and {A,..., A,}. Inall cases, weset A} = Ay =
— A, and for each surface A;, C; = 10* points were stored
and M; = 10° shooting trials were made. All results were
averaged over ten independent FFS runs, leading to rate
constants with error bars similar to those of the brute-force
result.

Table I shows good agreement between the FFS and
brute-force results. The FFS result for k,p does not depend
on A4, on n, or on the position of the interfaces. These
parameters affect only the efficiency of the method, which
will be discussed in detail in future work.

We have also calculated the flipping rate for a general
version of the switch [15], in which A, and B, dimers can
bind to the DNA simultaneously (again, k; = 5k; k;, = k).
The result of the FFS calculation [k, = (4.11 = 0.07) X
1075k] is again in good agreement with the brute-force
result [k,p = (4.21 = 0.05) X 1073k].

Returning to the exclusive switch, the CPU time for the
FES calculation was 40-90 times less than for the brute-
force simulation. The CPU time for FFS increases much
more slowly as the rate k,p decreases than for the brute-
force approach. As an example of a very rare event, we
have calculated the flipping rate for a switch in which the
rate constant for protein degradation is reduced to 0.175k.
Using FFS, we obtain k45 = (1.92 = 0.09) X 10~%k, 500
times slower than the switch considered above. This result
would have been extremely difficult to obtain using brute-
force simulation.

Figure 4(a) shows five of the transition paths obtained
for the switch of Fig. 2, plotted as a function of N and Ng.
To obtain these paths, we begin with the collection of
partial trajectories that reach Ay from A, and trace these
back via the intervening surfaces to A,. The transition path
ensemble (TPE) is seen to be rather broad in the N, Ny
plane. Figure 4(b) shows the difference in the number of
free protein molecules A = (ng + 2ng,) — (np + 2n4,),

and the occupancy of the operator sites, as functions of
time, for a particular transition path. Also plotted is the
committor, Pg(x). This is the probability that a new trajec-
tory fired from point x will reach region B before region A
[11], here estimated by firing 100 test trajectories. It is
clear that the transition process is quite diffusive: Aand P B
increase rather smoothly, and the operator state changes
many times during the transition process.

The transition state ensemble (TSE) is defined as the
collection of points along paths in the TPE for which Py =
0.5. We have extracted these points from a sample of 1000
paths. Figure 4(c) shows the probability distribution p(A)
for the TSE, separated into the components due to the three
operator states O, OA,, and OB, (color coded). The op-
erator state and the number of free molecules are corre-
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FIG. 4 (color). (a) Ny and N, plotted for five transition paths.
(b) Py (top), A = (ng + 2ng,) — (ns + 2n,,) (middle), and
operator occupancy (bottom, color coded) are plotted versus
time for a typical path. (c) Probability p(A) for the TSE with
Pz = 0.5. p(A) is split into color-coded contributions from the
three operator states. The area of each histogram gives the
probability 7gox of finding the operator in a particular state
(the three areas thus sum to unity) (d) 7igx as a function of A.
Solid lines correspond to transitions from A to B, and dotted
lines to those from B to A, obtained by exchanging A with B
and A with B (i.e., A = —A and OA, < OB,).
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lated: the histograms for OA, are shifted to higher values
of A than those for OB,. This shows that when A, is bound
to the DNA, on average, a larger excess of free B molecules
(larger A)is required to obtain Pz = 0.5 than when B, is
bound. Thus the reaction coordinate depends both on A
and the operator state.

A key point to note from Fig. 4(c) is that, although the
switch is symmetric on interchanging /A with B and A
with B, the TPE for the transition from A to B does not
coincide with that from B to A. For Pp = 0.5, operator
states OA, and OB, are not equally populated (the DNA is
mostly in state OB,). Moreover, the equivalent plots for
Pp = 0.2 and for Pz = (.8 do not map onto one another on
reversing the roles of A and B and A and B (data not
shown). This asymmetry is further illustrated in Fig. 4(d),
where the probability 77gx of finding the operator in a
particular state is plotted as a function of A for paths
from A to B (solid lines) and from B to A (dotted lines).
Clearly, the forward and backward paths do not coincide.
Rare event problems in condensed matter physics often
have dynamics that obey detailed balance and microscopic
reversibility. In that case, the ensembles of forward and
reverse transition paths must be the same. In contrast, our
system does not obey detailed balance [9], and so the
forward and reverse path ensembles need not be the same.

In this Letter, we have presented a rare event simulation
of a biochemical network. To this end, we have developed
a scheme, forward flux sampling, that makes it possible to
generate transition paths and calculate rates in systems
where the phase space density is not known a priori. In
FFS, the barrier separating the stable states A and B is
traversed in a ratchetlike manner, making the method
highly suitable for very rare events. We have used FFS to
analyze the rate and mechanism of the flipping of a genetic
switch: we find that, although the switch is symmetric on
exchanging A with B and A with B, the TPE for the A to B
transition differs from that for B to A. This implies that the
distribution of transition paths does not follow the steady
state phase space density [18] (which must be symmetric).
Hence, even when the dynamics is highly stochastic, one
should not a priori assume equilibration during the tran-
sition process. Finally, the FFS method is not limited to
biochemical networks: it could be used with any stochastic
dynamical scheme to study rare events and nonequilibrium
transitions.
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