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Competing Spin Phases in Geometrically Frustrated Magnetic Molecules
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We identify a class of zero-dimensional classical and quantum Heisenberg spin systems exhibiting
anomalous behavior in an external magnetic field B similar to that found for the geometrically frustrated
kagome lattice of classical spins. Our calculations for the isotropic Heisenberg model show the emergence
of a pronounced minimum in the differential susceptibility dM=dB at Bsat=3 as the temperature T is raised
from 0 K for structures based on corner-sharing triangles, specifically the octahedron, cuboctahedron, and
icosidodecahedron. As the first experimental evidence we note that the giant Keplerate magnetic molecule
fMo72Fe30g (Fe3� ions on the 30 vertices of an icosidodecahedron) exhibits this behavior. For low T when
B � Bsat=3 two competing families of spin configurations exist of which one behaves magnetically
‘‘stiff’’ leading to a reduction of dM=dB.
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The magnetism of frustrated one-, two-, and three-
dimensional lattice spin systems is a fascinating subject
due to the richness of phenomena that are observed [1–3].
In this Letter we report that one effect of geometrical
frustration, which so far has been reported [4] only for
the theoretical model of classical spins on a kagome lattice,
already appears for a class of zero-dimensional materials,
namely, certain magnetic molecules hosting highly sym-
metric arrays of classical or quantum spins. These molecu-
lar units [5] contain a set of paramagnetic ions whose
mutual interactions are described by isotropic Heisenberg
exchange and where the intermolecular magnetic interac-
tions (dipole-dipole for the most part) are negligible as
compared to intramolecular Heisenberg exchange.
Magnetic molecules as zero-dimensional spin systems
provide a new avenue for detailed exploration of the basic
issues of geometric frustration. They are particularly ap-
pealing since they offer the prospect of being modeled
unencumbered by some of the complications of bulk mag-
netic materials.

We here report experimental and theoretical results for
the occurrence of a striking anomaly in the differential
susceptibility dM=dB versus magnetic field B that is ex-
hibited by the giant Keplerate magnetic molecule
fMo72Fe30g [6,7]. This molecule features 30 Fe3� ions on
the vertices of an icosidodecahedron that interact via
nearest-neighbor (nn) isotropic antiferromagnetic (AF) ex-
change (J=kB � 1:57 K). Because of their near-perfect
Oh-symmetric coordination environment, the Fe3� ions
05=94(1)=017205(4)$23.00 01720
represent ideal s � 5=2 spin centers with virually no
single-ion anisotropy. We also present theoretical results
for the classical and quantum Heisenberg model showing
that the same anomaly in dM=dB occurs for a class of
geometrically frustrated zero-dimensional systems, where
spins mounted on the vertices of a triangle, an octahedron,
a cuboctahedron, or an icosidodecahedron interact via nn
isotropic AF exchange. As the temperature T is raised from
0 K a deep narrow minimum in dM=dB emerges in the
vicinity of one-third the saturation field Bsat, which upon
increasing T extends over a larger field interval and its
sharp features progressively deteriorate. We attribute this
phenomenon to a common topological property of these
polytopes, namely, that each is assembled from corner-
sharing triangles. In the classical case the drop in
dM=dB can be understood as a result of the interplay of
two effects: In the immediate vicinity of Bsat=3 a family of
‘‘up-up-down’’ (uud) spin configurations is energetically
competitive with the continuous family of spin configura-
tions of lowest energy [8]. However, the uud spin configu-
rations are magnetically ‘‘stiff,’’ i.e., dM=dB � 0 for low
temperatures, and thus reduce the susceptibility of the
system.

We write the AF Heisenberg Hamiltonian as

H � J
X
�m;n�

~Sm � ~Sn � g�BB �
X
n

~Sn; (1)

where J is a positive energy, the spin operators ~Sn are in
units of �h, B is the external field, g is the spectroscopic
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splitting factor, �B is the Bohr magneton, and �m; n�
directs that the sum is over distinct nearest-neighbor pairs.
The classical counterpart of Eq. (1) is obtained by replac-
ing each spin operator ~Sn by

�����������������
s�s� 1�

p
Sn, where Sn is a

c-number unit vector [9,10].
One very attractive feature of the polytopes under con-

sideration is that their exact classical ground state energy is
known [11]. For B 	 Bsat it is given by

E0�B� � 

3

2
N�Jc

�
1� 3

�
B
Bsat

�
2
�
; (2)

where Jc � s�s� 1�J is called the classical Heisenberg
exchange constant, Bsat � 6Jc=�c, �c � g�B

�����������������
s�s� 1�

p
,

and N� is the number of corner-sharing triangles
(�4; 8; 20 for the octahedron, the cuboctahedron, and the
icosidodecahedron, respectively). A plot of this quantity
versus B=Bsat is shown in Fig. 1 (solid curve). The ground
state magnetic moment and differential susceptibilty are
given by M0�B� � 
dE0=dB and dM0�B�=dB, respec-
tively. For B � 0 each spin system is decomposable into
three sublattices of N=3 spins each; all spins of a given
sublattice are mutually parallel; the sublattices are charac-
terized by three coplanar unit vectors with angular spac-
ings of 120�. The magnetization of the system is linear in B
until Bsat and constant (fully saturated configuration) for
larger fields. The linear rise with B can be pictured in terms
of the folding of an ‘‘umbrella’’ [8] defined by the three
sublattice unit vectors as they close towards the field vector
B.

Also shown in Fig. 1 are the energy curves for three
other specific configurations of interest. These are configu-
rations where the three (unit) spin vectors associated with
each triangle are constrained to be collinear and the result-
ant vector is either parallel or antiparallel to B. These
configurations are labeled as uuu (up-up-up), uud, and
ddu. For each of these collinear configurations the mag-
netic moment of the polytope is independent of B and thus
FIG. 1. Total energy vs magnetic field for T � 0 K for the
classical AF triangle, octahedron, cuboctahedron, and icosido-
decahedron. The solid curve is given by Eq. (2). The dashed
curves correspond to collinear structures discussed in the text.
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dM=dB vanishes and one can describe these configurations
as being magnetically stiff. The fully saturated uuu con-
figuration is of minimal energy for B> Bsat. The uud
configuration is of special interest since its energy coin-
cides with the minimal energy of the spin system for B �
Bsat=3 and exceeds the minimal energy for any other choice
of field. For T � 0 K and for any choice of B other than
Bsat the uud configuration will not play a role. However,
for T > 0 K and for B in the vicinity of Bsat=3 a significant
contribution to the partition function will arise from the set
of configurations derived by infinitesimal modifications of
the uud configuration. These slightly modified uud con-
figurations lead to a reduction of the differential suscepti-
bility of the system because of their magnetic stiffness. Our
qualitative considerations for T > 0 K are confirmed by
the results of our classical Monte Carlo simulations for the
three polytopes as shown in Fig. 2. Figure 3 displays the
results for a classical model of fMo72Fe30g, namely, 30 clas-
sical spins on the vertices of an icosidodecahedron, as
substitutes for quantum spins with s � 5=2. As T is in-
creased from 0 K a sharp narrow drop emerges that is
situated at Bsat=3 (vertical dashed line). As T continues
to increase the drop extends over a larger interval and its
sharp features progressively wash away. One also observes
a temperature dependence of the field associated with the
minimum in dM=dB; i.e., it decreases with increasing T.

The relevance of these theoretical results to real mag-
netic materials is demonstrated by our experimental data
for the differential susceptibilty of the giant Keplerate
magnetic molecule fMo72Fe30g. The magnetization was
measured at 0.42 K in pulsed magnetic fields up to 23 T
(sweep rate 15 000 T=s) at the Okayama High Magnetic
Field Laboratory by using a standard inductive method.
The sample was immersed in liquid 3He to maintain good
contact with the thermal bath. The experimental results for
dM=dB (in arbitrary units) are shown in Fig. 4 and the drop
at about Bsat=3 is clearly evident. However, the data re-
semble the simulational curve for 2 K (see the inset in
Fig. 4), not 0.42 K, perhaps suggesting an elevated effec-
FIG. 2. Low-temperature (kBT=Jc � 10
2) simulational re-
sults for dM=dB vs B for classical spins on the octahedron,
the cuboctahedron, and the icosidodecahedron.
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FIG. 3. Differential susceptibility dM=dB versus B for the
classical Heisenberg model of fMo72Fe30g obtained by Monte
Carlo simulations for temperatures given in the legend.
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tive spin temperature due to the high sweep rate. To clarify
this point we also measured the magnetization in steady
fields by a capacitance method in the range up to 7 T for
T � 16 mK and 0.73 K and obtained close agreement with
the pulsed-field data. The considerable broadening of the
drop in dM=dB may point to the occurrence of a staggered
field [12], since the principal axes of the Fe ions are not
strictly equivalent. A specific suggestion [13] is that the
broadening is due to Dzyaloshinskii-Moriya terms supple-
menting the isotropic Heisenberg model, originating from
possible low symmetry of the nearest-neighbor Fe-Fe
bond. Further study of this issue is warranted.

To explore the role of quantum effects we have calcu-
lated dM=dB for the triangle and the octahedron of spins
with arbitrary s as well as for a cuboctahedron (N � 12)
with s � 1=2 and s � 1. For the latter system this involves
numerical diagonalization of matrices defined on a Hilbert
space of dimension 312 ( � 531 441). Even by fully ex-
ploiting the symmetries of the Hamiltonian this is at the
limit of present day computing capabilities. The results for
the cuboctahedron with s � 1 are shown in Fig. 5 for
FIG. 4 (color online). Experimental results (in arbitrary units)
for a sample of fMo72Fe30g performed at 0.42 K using a pulsed-
field technique. In the inset Monte Carlo results for 0.42 and
2.0 K are given.
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different temperatures. As in the previous figures one again
encounters a strong reduction of dM=dB. The minimum is
located exactly at Msat=3, but since B and M are not strictly
proportional for a quantum system the drop occurs for
fields slightly larger than Bsat=3. For T � 0 K M vs B
can be described as a ‘‘staircase’’ of 12 steps originating
from ground state Zeeman level crossings and dM=dB
consists of a set of Dirac delta functions at the crossing
fields. For T > 0 K the abrupt magnetization steps are
smoothed out and dM=dB exhibits finite peaks. Our results
for the triangle and the octahedron for general spins s
exhibit the same overall behavior seen in Fig. 5.

One can understand that the pronounced minimum in the
susceptibility occurs for classical as well as quantum spins
by examining the partition function for the particularly
simple example of the triangle where the results can be
obtained by exact analytical methods. For integer spins s
the quantum partition function may be written as

Z�t; b� � �sinh�b�0�

1

X3s
n�0

Gne

�2

n=�2t� sinh�b�n�; (3)

where b � �cB=�kBT�, t � kBT=Jc, �n � �n� 1
2�=�����������������

s�s� 1�
p

, Gn � �n=
�����������������
s�s� 1�

p
, and �n is the multiplicity

factor, namely, the number of distinct ways of achieving
total spin n upon adding three distinct (integer) quantum
spins s. In particular, �n � 2�n� 1

2� for 0 	 n 	 s and
�n � 3�s� 1

2� 
 �n� 1
2� for s� 1 	 n 	 3s. The analo-

gous formulas are easily derived for half-integer spins s.
Formula (3) for Z is very similar to that for the classical
Heisenberg triangle which may be written as [10]

Z�t; b� � b
1
Z 3

0
dSG�S�e
S2=�2t� sinh�bS�: (4)

Here G�S� � 2S for 0 	 S 	 1 and G�S� � 3
 S for 1 	
S 	 3, arising from considering the geometrical volume
available to three unit vectors such that the magnitude of
their vector sum lies within a shell of radius S and unit
thickness. Indeed it is straightforward to verify that in the
FIG. 5. Differential susceptibility dM=dB versus B=Bsat of the
quantum Heisenberg cuboctahedron (s � 1) for values of kBT=J
shown in the legend.
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limit s ! 1 the quantum result [Eq. (3)] agrees with the
classical formula [Eq. (4)]. In the quantum formula the
multiplicity factor corresponds to the classical geometrical
function G�S�. Each of these quantities has two distinct
branches, depending on whether n is in the interval �0; s or
�s� 1; 3s or whether S is in the interval �0; 1 or �1; 3. In
fact, the existence of two distinct branches becomes mani-
fest in various higher derivatives of Z�t; b� at nonzero
temperatures for fields in the vicinity of B � Bsat=3. For
0< t � 1 there exists a narrow field range at about Bsat=3
such that each of the functions exp�
�2

n=�2t� sinh�b�n�
and exp�
S2=�2t� sinh�bS� has a very narrow maximum
for �n � 1 and S � 1 but nevertheless samples the two
branches. This is the mathematical orgin of the pronounced
minimum in dM=dB at B � Bsat=3.

Plateaulike structures in the magnetization versus B in
various two- and three-dimensional lattices built of corner-
sharing triangles lattices at one-third of the saturated mo-
ment have been under investigation for the past two dec-
ades as an expression of geometric frustration [1–3,14,15].
Moreover, theoretical studies of the classical Heisenberg
antiferromagnet on the kagome lattice show that dM=dB
has a pronounced minimum at one-third of Bsat [4].
However, the study of selective magnetic molecules such
as fMo72Fe30g can give new insights for this subject since
such molecules are much better accessible both experimen-
tally and theoretically.

In summary, we have shown that for a class of geomet-
rically frustrated magnetic polytopes, namely, the octahe-
dron, the cuboctahedron, and the icosidodecahedron, field-
induced competitive spin configurations exist which mani-
fest themselves in a pronounced minimum in the differen-
tial susceptibility dM=dB in the vicinity of Bsat=3. We have
also reported the first experimental observation of this
effect. Our data for the giant Keplerate magnetic molecule
fMo72Fe30g are consistent with our classical Monte Carlo
results for the icosidodecahedron. Furthermore, we have
shown that this feature reflects a general intrinsic property
of the very building block of these specific polytopes,
namely, the simple AF equilateral Heisenberg spin tri-
angle, and emerges for both classical and quantum spins.
Moreover, our theoretical calculations for each of these
polytopes show that the specific heat versus B also exhibits
01720
anomalous behavior in the vicinity of Bsat=3 [16]. A mea-
surement of this quantity for fMo72Fe30g at very low tem-
peratures would be of great interest.
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