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Microscopic Verification of Topological Electron-Vortex Binding
in the Lowest Landau-Level Crystal State
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When two-dimensional electrons are subjected to a very strong magnetic field, they are believed to form
a triangular crystal. By a direct comparison with the exact wave function, we demonstrate that this crystal
is not a simple Hartree-Fock crystal of electrons but an inherently quantum mechanical crystal
characterized by a nonperturbative binding of quantized vortices to electrons. It is suggested that this
has qualitative consequences for experiment.
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The quantum mechanical behavior of solids has been the
subject of much investigation in the context of the quantum
solids of 3He and 4He [1]. There has been a revival of
interest in this topic due to the recently reported ‘‘super-
solid’’ phase of 4He [2], resulting from a significant over-
lap between the wave functions of neighboring atoms [3].
This Letter demonstrates that the lowest Landau-level (LL)
crystal of electrons provides another example of an inher-
ently quantum mechanical crystal.

Much work has been done on the lowest LL crystal for
over two decades. When a two-dimensional electron sys-
tem is exposed to a magnetic field (B), the kinetic energy is
quantized into LLs. The number of occupied LLs is called
the filling factor, � � �hc=eB, � being the two-
dimensional electron density. At sufficiently strong mag-
netic fields, when all electrons fall into the lowest LL (� <
1), the kinetic energy is no longer relevant, and the nature
of the state is determined solely by the Coulomb interac-
tion. Following Wigner [4], the dominance of the interac-
tion energy can be expected to produce an electron crystal.
For a range of filling factors the system condenses into a
quantum liquid, characterized by dissipationless transport
and precisely quantized plateaus of Hall resistance [5].
There are strong indications, however, that a crystal occurs
at sufficiently low � [6], and its properties have been
probed experimentally by transport [7–11] and by electro-
magnetic waves [12–17], as well as theoretically [18–30].

Certain microscopic wave functions [31,32] are known
to provide a good account of the fractional-quantum-Hall-
effect (FQHE) liquid, as ascertained from comparisons
with exact solutions known for systems containing a finite
number of electrons, but become progressively worse with
decreasing �. A Hartree-Fock wave function describing an
‘‘electron crystal’’ (EC) provides a better approximation
for the ground state at low �. However, the Hartree-Fock
crystal is not particularly good either, which has raised
questions regarding the true nature of the crystal. A very
interesting proposal suggests that the physics underlying
the FQHE liquid is also operative in the crystal phase
[27,28]. Yi and Fertig [27] have shown that a variational
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wave function in which vortices are bound to electrons has
lower energy than the earlier Lam-Girvin [22] wave func-
tion in the filling factor range 0:1< �< 0:2. Narevich,
Murthy, and Fertig [28] have used a Hamiltonian formu-
lation of composite fermions to estimate gaps and shear
modulus on either side of the � � 1=5 quantum Hall state.

The notion of binding of quantized vortices to electrons
in the lowest LL crystal, if confirmed, would indicate the
formation of a quantum crystal, given that vortices are
inherently quantum mechanical objects. While the conse-
quences of the quantum mechanical nature of such a crystal
ought to be evaluated and tested by experiment, rigorous
and unbiased theoretical tests of electron-vortex binding
are possible because of the fortunate feature that the exact
ground state wave function can be obtained, for finite
systems, by a brute force numerical diagonalization for a
wide range of � in the crystal phase. The principal result of
this work is to show that a wave function for the composite-
fermion (CF) crystal, the composite fermion being the
bound state of an electron and an even number of vortices,
is extremely accurate at low �—more accurate than the
accepted FQHE wave functions for the liquid phase—thus
establishing that the real crystal indeed has vortices bound
to electrons. We also determine the parameter range where
the CF crystal occurs. One might have expected the physics
of the liquid to carry over into the crystal phase in the
proximity of the phase boundary separating the liquid and
the crystal, but our calculations indicate that the CF crystal
is realized even deep inside the crystal phase, down to the
lowest � considered below.

The wave packet for an electron in the lowest LL local-
ized at R � �X; Y� is given by [20]


R�r� �
1�������
2�

p exp
�
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�r� R�2 �
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�xY � yX�

�
; (1)

where the magnetic length, l0 �
��������������
�hc=eB

p
, has been taken

as the unit of length. The wave function for the EC is
constructed by placing electrons on a triangular lattice
Rj, the lowest energy solution for the classical problem,
and then antisymmetrizing the product [20]:
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FIG. 1. The correlation energy of the optimal CF crystal, i.e.,
the percent of deviation of its Coulomb energy from the
Coulomb energy of the uncorrelated electron crystal, for N �
6 particles. The superscript 2p on 2pCFC indicates the vortex
quantum number of composite fermions. The energy of the
electron crystal for L > 400 is taken from Yannouleas and
Landman [33]. The deviation of the exact energy from the
electron crystal energy is also shown for L � 145; for larger
angular momenta, where the exact energy is not available, we
show an accurate approximation, V�2�

CF (explained in the text), as
an independent reference. For 2p > 6, the number of vortices
carried by composite fermions is shown in parentheses near the
diamond. The energy difference per particle between the elec-
tron and the CF crystals is given in the inset, quoted in units of
e2=�l0, where l0 is the magnetic length and � is the dielectric
constant of the host semiconductor.
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where the sum is over all permutations P and �P is �1 for
even permutations and �1 for odd permutations. With the
lattice constant a � �4�=

���
3

p
��1=2l0, the overlap integral

between nearest neighbor electron wave functions [20],
exp��a2=2l20� � exp��3:627=��, decays rapidly with de-
creasing �. We work with the symmetric gauge, A �
�B=2���y; x; 0�, for which the total angular momentum L
is a good quantum number. Because the wave function �EC

is not an eigenstate of angular momentum, we follow the
method of Yannouleas and Landman [33] to project it onto
a definite L, denoting the resulting wave function �EC

L .
Such projection amounts to creating a rotating crystal,
implying that the crystalline structure is not apparent in
the density but in the pair correlation function. The explicit
expression for �EC

L is given in Ref. [33].
Following the standard procedure of the CF theory

[32,34], we construct the following wave function:

�2pCFC
L �

Y
j<k

�zj � zk�
2p�EC

L� ; (3)

L� � L� pN�N � 1�: (4)

It is interpreted as a CF crystal (CFC), because the Jastrow
factor

Q
j<k�zj � zk�2p binds 2p quantized vortices to each

electron in �EC to convert it into a composite fermion; the
composite fermions of different flavors are denoted by
2pCF, and their crystals by 2pCFC. We next proceed to
compare �

2pCFC with exact wave functions. The latter can
be obtained (using the Lanczos method) for up to N � 7
particles in the low-� region of interest. We present below
detailed results for N � 6; the study of N � 5 and N � 7
particles is consistent with our conclusions below. The
filling factor of the finite system is defined by the expres-
sion � � N�N � 1�=2L, which gives the correct value of �
for a uniform density state in the thermodynamic limit. For
N � 6, the lowest energy classical configuration has one
particle at the center, with the remaining five forming a
ring around it [35]. The wave functions �

2pCFC for 2p � 0
have rather complicated correlations built into them, but
the interaction energy per particle,

V �
1

N

h�
2pCFC
L j

P
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L i

h�
2pCFC
L j�
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L i

; (5)

can be evaluated by the Metropolis Monte Carlo method at
least for many large values of 2p (the computation time
increases rapidly as 2p is reduced). The total energy also
has contributions from electron-background and
background-background interactions, but these terms are
the same for different crystal wave functions for a given L,
so they are not relevant for comparisons.
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Figure 1 shows the correlation energy of the optimal CF
crystal, defined as the deviation of its energy from that of
the uncorrelated electron crystal. (The computationally
accessible range of 2p allows us to determine the minimum
CFC energy. The only exceptions are the largest two values
of L, where we show the energy at the smallest 2p studied;
the minimum CF energy may be still lower here.) The
exact correlation energy is also shown for L � 145. For
L> 145, the dimension of the Fock space (D) is too large
for an exact treatment. As an independent reference point,
we obtain an accurate approximation to the exact energy by
the method of ‘‘CF diagonalization,’’ wherein the Coulomb
Hamiltonian is diagonalized in a correlated CF basis, the
dimension of which is much smaller than the dimension of
the full basis needed for the exact state; gradually increas-
ing the basis size gives an increasingly better approxima-
tion [36]. Figure 1 quotes V�2�

CF (using the notation in
Ref. [36]), obtained with a correlated CF basis of dimen-
sion 150. V�2�

CF has been shown to be very precise [36]: for
the six particle system it is within 0.02% of the exact
energy for L � 145, and we expect a similar level of
accuracy for higher L as well.

The minimum energy for all L is obtained at a nonzero
value of 2p, which establishes that the CF crystal provides
9-2



TABLE I. The last three columns give the overlaps of CF
crystal (CFC), electron crystal (EC), and Laughlin’s wave func-
tion with the exact ground state wave function at several filling
factors �. The overlap is defined as
jh�trialj�exactij2=h�trialj�trialih�exactj�exacti. The second col-
umn gives D, the dimension of the basis space for N � 6
electrons, and L is the total angular momentum of the state.

� �L� D CFC EC Laughlin

1=5 (75) 19 858 0.891 0.645 0.701
1=7 (105) 117 788 0.994 0.723 0.504
1=9 (135) 436 140 0.988 0.740 0.442
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a better variational state than the electron crystal. Most
significantly, the CF crystal is essentially the exact solution
for � � 1=7 (L � 105). For 100< L< 145, the energy of
the optimal CF crystal is approximately within 0.02% of
the exact energy. Tables I and II show how Laughlin’s
liquid wave function, �EC, and �CFC compare with the
exact wave function for � � 1=5, 1=7, and 1=9. As indi-
cated earlier, the liquid wave function worsens and �EC

improves with decreasing �, but neither is very good at
small fillings. In contrast, �CFC is surprisingly close to the
exact state. Its overlap with the exact wave function is

99% for � � 1=7 and 1=9, while its energy deviates
from the exact energy by 0.016% and 0.006%, respectively.
It is worth noting the following: (i) The exact state is a
linear combination of a large number of Slater determinant
basis functions (see Table I), involving D� 1 parameters,
and yet, a single CFC wave function captures its physics
almost exactly. (ii) The CFC wave function for � � 1=7 is
more accurate than Laughlin’s wave function at � � 1=3,
whose energy for N � 6 (in the disk geometry) is off by
0.15% and whose overlap with the exact state is 0.964, in
spite of the fact that the dimension of the Fock space at � �
1=3 is much smaller (D � 1206). For larger L, the energy
of the CFC is lower than V�2�

CF, with the possible exception
of the last two points, where we may not have the optimal
CFC.

Because every particle sees quantized vortices on every
other particle, the formation of composite fermions implies
a long range quantum coherence in the crystal phase. To
get a feel for how the binding of vortices to electrons
TABLE II. Interaction energies per particle for the exact
ground state, the CF crystal (CFC), the electron crystal (EC),
and Laughlin’s wave function for six particles at several filling
factors. The uncertainty in the last digit from Monte Carlo
sampling is given in parentheses.

� �L� Exact CFC EC Laughlin

1=5 (75) 2.2019 2.2042(5) 2.2196 2.2093(2)
1=7 (105) 1.8533 1.8536(2) 1.8622 1.8617(2)
1=9 (135) 1.6305 1.6306(1) 1.6361 1.6388(1)
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affects the interparticle correlations, we show in Fig. 2
the pair correlation function g�x� for several candidate
wave functions as well as the exact ground state for � �
1=7; g�x� is the probability of finding a pair of particles at
an arc distance x on a circle of radius R. (R is chosen to
match the distance of a particle in the parent classical
crystal from the center of the disk.) The result shows that
the crystalline correlations are slightly weakened by the
formation of composite fermions. It is perhaps counter-
intuitive that such an effect should lead to a lower energy
even at very low fillings.

Of interest is the nature of the thermodynamic state,
obtained in the limit N ! 1 at a fixed filling factor.
Finite size studies do not necessarily provide a reliable
account of the thermodynamic state. For example, for N �
6 the CFC gives a better description of the � � 1=5 ground
state than Laughlin’s liquid wave function, even though the
thermodynamic state here is known to be a liquid [7,8].
However, when an extremely precise and unambiguous
description of the finite N state is obtained, as is the case
at � � 1=7, we consider that to be a strong indication for
the nature of the state in the thermodynamic limit. In any
case, even though our finite N study cannot give the precise
� value where a transition from liquid to crystal takes
place, it does make a compelling case that whenever the
thermodynamic state is a crystal, it is a crystal of compos-
ite fermions, even in regions of the phase diagram far from
the CF liquid.

The quantum character of the crystal is not fragile and
ought to be observable at presently attainable tempera-
tures, even at very small �. The energy difference per
particle, VCFC � VEC, shown in the inset of Fig. 1, gives
a crude estimate for the temperature below which the
quantum nature of the crystal should be robust to thermal
fluctuations. The relevant temperatures appear to be well
within the present experimental reach; for example, for
 0

 0.5

 1

 0  5  10  15  20

x

FIG. 2. The pair correlation functions for the CF crystal (solid
circles), the electron crystal (empty squares), and Laughlin’s
wave function (empty triangles) on a circle of radius R �
6:445l0 for six particles at � � 1=7. The solid line shows the
exact pair correlation function.
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parameters appropriate for GaAs, the quantum crystal
regime is estimated to be below � 25 mK (at B � 25 T)
even at � � 1=33. From the N dependence, we have esti-
mated that the energy difference shown in the inset under-
estimates the thermodynamic energy difference by
approximately a factor of 2. It is interesting to note that
even as the energy difference between the CF and the
electron crystals decreases as � ! 0, 2p continues to
rise. Thus, CF flavors of up to very high 2p are predicted
to occur in the crystal state. In the liquid phase, 2CFs and
4CFs have definitely been observed, and there is evidence
also for 6CFs and 8CFs at relatively high temperatures [11].

Unlike in bosonic quantum crystals, the overlap between
(uncorrelated) electron wave packets at neighboring sites is
negligible in the filling factor region of interest (the overlap
integral is 10�15 for � � 1=9). The quantum nature of the
CF crystal owes its origin to the long range Coulomb
interaction.

Given that the CF liquid behaves qualitatively differ-
ently from an electron liquid, one may ask in what ways the
properties of the CF crystal are distinct from those of an
electron crystal. We mention here a few examples where
the CFC can provide natural explanations for certain ex-
perimental facts, although further work will be needed to
make the connection with experiment more direct and to
clarify other possible implications. The issue is obviously
relevant to experiments that exhibit transitions between the
liquid and crystal phases. Reentrant transitions between the
FQHE liquid and an insulating state, thought to be a pinned
crystal, have been observed [7,8] in going from � � 2=5 to
� � 1=5. In the filling factor range 1=5> �> 1=9, the low
temperature insulating state melts into a CF liquid upon
raising temperature [11], as indicated by the appearance of
FQHE-like structure. These observations become less baf-
fling knowing that the crystal is itself made of composite
fermions rather than electrons, thus requiring a less drastic
reorganization of the state at the transition. Another result,
perhaps puzzling for an electron crystal, is that the Hall
resistance of the pinned crystal is close to the value it
would have for a liquid [37]. If the current is carried by
composite fermions instead, then the Hall voltage induced
by the accompanying vortex current (the vortices effec-
tively behave as magnetic flux quanta [32,38]), through an
effective Faraday effect, is roughly consistent with the
observation. (Zheng and Fertig [26] considered a similar
mechanism for transport by correlated interstitial defects.)
The unexpectedly small activation energy in the crystalline
state, compared to theoretical predictions based on an
electron crystal, as well as on its nonmonotonic filling
factor dependence, has also been rationalized in terms of
a CF crystal [27,28].
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