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Spin-Hall Effect in Two-Dimensional Electron Systems
with Rashba Spin-Orbit Coupling and Disorder
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Using the four-terminal Landauer-Büttiker formula and Green’s function approach, we calculate
numerically the spin-Hall conductance in a two-dimensional junction system with the Rashba spin-orbit
(SO) coupling and disorder. We find that the spin-Hall conductance can be much greater or smaller than
the universal value e=8�, depending on the magnitude of the SO coupling, the electron Fermi energy, and
the disorder strength. The spin-Hall conductance does not vanish with increasing sample size for a wide
range of disorder strength. Our numerical calculation reveals that a nonzero SO coupling can induce
electron delocalization for disorder strength smaller than a critical value, and the nonvanishing spin-Hall
effect appears mainly in the metallic regime.
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The emerging field of spintronics[1,2], which is aimed at
exquisite control over the transport of electron spins in
solid-state systems, has attracted much recent interest. One
central issue in the field is how to effectively generate spin-
polarized currents in paramagnetic semiconductors. In the
past several years, many works [1–5] have been devoted to
the study of injection of spin-polarized charge flows into
the nonmagnetic semiconductors from ferromagnetic met-
als. Recent discovery of intrinsic spin-Hall effect in
p-doped semiconductors by Murakami et al. [6] and in
Rashba spin-orbit (SO) coupled two-dimensional electron
system (2DES) by Sinova et al. [7] may possibly lead to a
new solution to the issue. For the Rashba SO coupling
model, the spin-Hall conductivity is found to have a uni-
versal value e=8� in a clean bulk sample when the two
Rashba bands are both occupied, being insensitive to the
SO coupling strength and electron Fermi energy [7].

While the spin-Hall effect has generated much interest
in the research community [8–17], theoretical works re-
main highly controversial regarding its fate in the presence
of disorder. Within a semiclassical treatment of disorder
scattering, Burkov et al. [10] and Schliemann and Loss
[11] showed that spin-Hall effect only survives at weak
disorder. On the other hand, Inoue et al. [14] pointed out
that the spin-Hall effect vanishes even for weak disorder
taking into account the vertex corrections. Mishchenko
et al. [15] further showed that the dc spin-Hall current
vanishes in an impure bulk sample, but may exist near
the boundary of a finite system. Nomura et al. [16] eval-
uated the Kubo formula by calculating the single-particle
eigenstates in momentum space with finite momentum
cutoff, and found that the spin-Hall effect does not de-
crease with sample size at rather weak disorder. Therefore,
further investigations of disorder effect in the SO coupled
2DES are highly desirable.

In this Letter, the spin-Hall conductance (SHC) in a
2DES junction with the Rashba SO coupling is studied
by using the four-terminal Landauer-Büttiker (LB) formula
05=94(1)=016602(4)$23.00 01660
with the aid of the Green’s function. We find that the SHC
does not take the universal value, and it depends critically
on the magnitude of the SO coupling, the electron Fermi
energy, and the disorder strength. For a wide range disorder
strength, we show that the SHC does not decrease with
sample size and extrapolates to nonzero values in the limit
of large system. The numerical calculation of electron
localization length based upon the transfer matrix method
also reveals that the Rashba SO coupling can induce a
metallic phase, and the spin-Hall effect is mainly confined
in the metallic regime. The origin of the nonuniversal SHC
in the 2DES junction is also discussed.

Let us consider a two-dimensional junction consisting of
an impure square sample of side L connected with four
ideal leads, as illustrated in the inset of Fig. 1. The leads are
connected to four electron reservoirs at chemical potentials
�0,�1,�2, and�3. In the tight-binding representation, the
Hamiltonian for the system including the sample and the
leads can be written as [18,19]
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Here, VSO is the SO coupling strength, "i 
 0 in the leads
and are uniformly distributed between ��W=2; W=2� in the
sample, which accounts for nonmagnetic disorder. The
lattice constant is taken to be unity, and �x and �y are
unit vectors along the x and y directions. In the vertical
leads 2 and 3, VSO is assumed to be zero in order to avoid
spin-flip effect, so that a probability-conserved spin current
can be detected in the leads.

The electrical current outgoing through lead l can be
calculated from the LB formula [20] Il � �e2=h� �P
l0�lTl;l0 �Ul0 �Ul�, where Ul � �l=��e� and Tl;l0 is the

total electron transmission coefficient from lead l0 to lead l.
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FIG. 1. Spin-Hall conductance GsH for some disorder
strengths as a function of electron Fermi energy E. Here, the
sample size L � 40 and the spin-orbit coupling VSO � 0:5t.
Inset is a schematic view of the four-terminal junction.

PRL 94, 016602 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
14 JANUARY 2005
A number of symmetry relations for the transmission co-
efficients result from the time-reversal and inversion in-
variance of the system after average of disorder
configurations, use of which will be implied. We consider
that a current I is driven through leads 0 and 1, and adjust
Ul’s to make I1 � �I0 � I and I3 � I2 � 0. Since in the
present system the off-diagonal conductance Gxy vanishes
by symmetry, U0 �U1 is equal to the longitudinal voltage
drop caused by the current flow I. In the vertical leads 2
and 3, where VSO � 0, the electrical currents are separable
for the two spin subbands Il � Il" � Il# with " and # for
spins parallel and antiparallel to the z axis. The spin current
is given by I�l�sH � � 
h=2��e���Il" � Il#�. By use of the LB
formula, it is straightforward to obtain for the transverse
spin current I�3�sH � �I�2�sH � GsH�U0 �U1�. Here, the pro-
portional coefficient

GsH �
�e
4�

�T3";0 � T3#;0� (2)

is the SHC, where T3�;0 is the electron transmission co-
efficient from lead 0 to spin-� subband in lead 3. Equa-
tion (2) can be calculated in terms of the nonequilibrium
Green’s function [21–23] GsH � ��e=4��Tr��3Gr�0Ga�.
Here, � � 1 and �1 in the spin- " and spin- # subspaces,
respectively, and �l � i��l � ��l�

y� with �l the retarded
electron self-energy in the sample due to electron hopping
coupling with lead l. The retarded Green’s function Gr is
given by

Gr �
1

E�HC �
P3
l�0��l�

; (3)

and Ga � �Gr�y, where E stands for the electron Fermi
01660
energy, and HC is the single-particle Hamiltonian of the
central square sample only. The self-energies can be first
computed exactly by matching up boundary conditions for
the Green’s function at the interfaces by using the transfer
matrices of the leads [24]. The Green’s function Eq. (3) is
then obtained through matrix inversion. In our calculations,
GsH is always averaged over up to 5000 disorder realiza-
tions, whenever W � 0.

In Fig. 1, the SHC GsH is plotted as a function of the
electron Fermi energy E at fixed size L � 40 for several
disorder strengths. The SHC is always an odd function of
electron Fermi energy E, and vanishes at the band center
E � 0. The antisymmetric energy dependence of the SHC
is similar to that of the Hall conductance in a tight-binding
model [25], and originates from the particle-hole symme-
try of the system. For E< 0 and E> 0 the charge carriers
are electronlike and holelike, respectively, and so make
opposite contributions to the SHC. With increasing E from
the band bottom E ’ �4t, except for a small oscillation
due to the discrete energy levels in the finite-size sample,
GsH increases continuously until E is very close to the band
center E � 0. It is easy to see from Fig. 1 that at weak
disorder W & t the calculated GsH may be greater than the
universal value, namely, 0.5 in our unit e=4�.

In order to determine the behavior of the spin-Hall effect
in large systems, we calculate the SHC as a function of the
sample size from L � 10 up to 100 for different strengths
of disorder, as shown in Fig. 2. For weak disorder W & 3t,
the SHC first increases with increasing sample size, and
then tends to saturate. In particular, for W & t, we see that
the SHC can be several times greater than the universal
value e=8�, when the system becomes large. For a stronger
disorder 3t & W & 5t, the SHC is roughly independent of
the sample size, and extrapolates to a finite value in the
large-size limit. Therefore, it is evident that the SHC will
not vanish in large systems in the presence of moderately
strong disorder W & 5t. With further increase of W, the
SHC becomes vanishingly small at W * 6t, as seen more
clearly from the inset of Fig. 2, indicating that very strong
disorder scattering would eventually destroy the spin-Hall
effect.

We further examine the dependence of the SHC on the
strength of the SO coupling. As shown in Fig. 3, overall,
the SHC increases with increasing VSO in the range 0 �
VSO � t. ForW � 0 or weak disorder, the SHC displays an
interesting oscillation effect with a period much greater
than the average level spacing. According to Eq. (2), the
oscillation of the SHC is a manifestation of the oscillation
of the sideway spin-resolved transmission coefficients. For
a two-terminal junction with the SO coupling, similar
oscillation with finite sample size has previously been
observed for the spin-resolved transmission coefficients
[19], where the oscillation period was discussed to be the
spin precession length Lsp. If we apply the same condition
L � nLsp with n an integer and notice Lsp ’ �t=VSO, [19]
we can obtain for the equivalent period in the SO cou-
2-2
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FIG. 2. Spin-Hall conductance as a function of sample size L
for different disorder strengths at E��2t and VSO � 0:5t. Error
bars due to statistical fluctuations, being smaller than the symbol
size, are drawn inside the open symbols. Inset: spin-Hall con-
ductance as a function of disorder strength for L � 40 and 60.
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pling �VSO ’ �t=L. For the parameters used in Fig. 3,
�VSO ’ 0:08t, which is very close to the period as seen
in the figure. This indicates that the oscillation of the SHC
is due to a spin precessional effect in finite-size systems.
Experimentally, VSO can be varied over a wide range by
tuning a gate voltage [26,27], and so this oscillation effect
may possibly be observed directly.

Electron delocalization is a crucial issue for understand-
ing electron transport properties in the 2DES, and has
already been studied experimentally by use of magneto-
resistance measurements [27]. For this reason, we inves-
tigate numerically whether the Rashba SO coupling can
induce a universal electron delocalization in the presence
of disorder. According to the well-established transfer ma-
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FIG. 3. Spin-Hall conductance as a function of spin-orbit
coupling strength for some disorder strengths. Here, the sample
size L � 40 and the electron Fermi energy E � �2t.
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trix approach, [28,29] we calculate the electron localiza-
tion length $ on a bar of essentially infinite length (5�
105) and finite width L. In Fig. 4(a), the normalized local-
ization length $=L is plotted as a function of disorder
strength for VSO � 0:5t and L � 8, 16, 32, and 64. At
weak disorder, $=L increases with L, indicating that the
localization length $ will diverge as L! 1, correspond-
ing to an electron delocalized metallic phase. With the
increase of W, $=L goes down and all the curves cross at
a point (fixed point) W � Wc ’ 6:3t, where $=L becomes
independent of bar width L. For W >Wc, $=L decreases
with L, indicating that $ will converge to finite values as
L! 1, corresponding to an electron localized insulator
phase. Thus the fixed point W � Wc is the critical disorder
strength for the metal-insulator transition. Our result is
consistent with the earlier calculation by Ando [18], where
a metallic phase was established at the band center E � 0
for a strong Rashba SO coupling. Here, we also study weak
SO coupling. In Fig. 4(b), we plot the result for a SO
coupling strength much smaller than the electron hopping
integral, i.e., VSO � 0:1t, and similar phase transition is
also revealed at Wc ’ 4:6t. In general, we have performed
calculations in the whole range from strong to weak SO
coupling (details will be presented elsewhere), and found
that electron delocalization occurs for any nonzero SO
coupling strength as the magnitude of the disorder varies.
Our result is in agreement with the perturbative calculation
of weak localization. [30] As VSO reduces, the critical Wc
decreases, and the size-independent critical $=L increases
(so does the critical longitudinal conductance Gxx [28,29]).
In the limit VSO ! 0, we have Wc ! 0 and all electron
states become localized, recovering the known regime of
the two-dimensional Anderson model for electron local-
ization [28]. The fact that the critical $=L changes with
VSO indicates that the SO coupled 2DES belongs to the
universality class of two-parameter scaling [31]. Compar-
ing Wc � 6:3t calculated in Fig. 4(a) for VSO � 0:5t and
E � �2t with the SHC shown in Fig. 2 for the same
parameters, we see that nonvanishing spin-Hall effect ex-
ists mainly in the metallic regime.
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FIG. 4. Normalized localization length as a function of disor-
der strength calculated on long bars of length 5� 105 and widths
L � 8, 16, 32, and 64.
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Our numerical study addresses the spin-Hall effect in a
finite-size junction system with leads. A comparison be-
tween the spin-Hall effect and the quantum Hall effect can
shed some light on the nonuniversal SHC obtained. For a
quantum Hall effect system, delocalized states exist at the
centers of the discrete Landau levels, which are separated
by mobility gaps consisting of localized states. In the unit
of conductance quantum e2=h, the Hall conductance is
known to be a sum of the topological Chern numbers of
all the occupied delocalized states below the Fermi energy
[25]. If the Fermi energy lies in a mobility gap, the Hall
conductance is well quantized to an integer. If the Fermi
energy is at a critical point, where a delocalized state
exists, the Hall conductance intrinsically fluctuates be-
tween two integers. Similarly, the SHC is also related to
corresponding topological numbers of the occupied delo-
calized states. However, in the present spin-Hall systems,
the delocalized states constitute a continuous spectrum
without mobility gaps (or energy gaps [18]). Due to the
lack of a mobility gap around the Fermi energy, the SHC
can fluctuate and does not show quantized plateaus. As a
matter of fact, the universal value e=8� predicted for clean
bulk systems [7] is 0.5 instead of an integer in the unit of
spin conductance quantum e=4� (here the electron charge
e in the conductance quantum e2=h needs be replaced with
electron spin 
h=2). For the above reason, one could not
expect that the SHC will not change to different values
under different boundary conditions. In the present junc-
tion system, the open boundary, i.e., the connection of the
finite-size sample with the much larger semi-infinite leads
is quite different from the essentially close boundary used
in previous calculations [7,9–16], which is likely the cause
for the SHC to be possibly greater or smaller than e=8�
depending on the electron Fermi energy, the disorder
strength and the magnitude of the SO coupling. Notably,
the analytical calculation [15] also indicates that the con-
tacts between a sample and leads could enhance the gen-
eration of spin currents. Our calculations provide an
important evidence that the proposed intrinsic spin-Hall
effect [6,7] may be realized experimentally in junction
systems in the presence of disorder.
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Note added.—After initial submission of this paper, we
became aware of a couple of preprints by Nikolić, Zârbo,
and Souma, and by Hankiewicz et al. [32], where similar
LB formula calculations were carried out. Despite different
parameter values used, their results of nonuniversal SHC
robust against disorder scattering are consistent with ours.
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