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Tunable Bands of Electronic Image States in Nanowire Lattices
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We demonstrate that suspended arrays of parallel nanowires support bound electron image states with
rich band structures. Surprisingly, these Bloch states can be highly detached from the surfaces of the
nanowires, similar to the single-tube wave functions. This is because an electron hovering in such a
periodic lattice of nanowires is influenced by a Coulombic-like attraction and a centrifugal repulsion,
which are both central symmetric around each wire. These novel states could be used in building of
waveguides, mirrors, and storage places for Rydberg-like electrons.
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FIG. 1 (color online). Scheme of electron image states formed
in the vicinity of a 1D array of parallel metallic nanotubes.
Dielectric materials with periodic structures formed in
biological systems can efficiently filter and guide light [1].
Based on the same principles, man-made ‘‘photonic band-
gap’’ materials [2] have been designed to propagate pho-
tons, much the same way crystalline solids propagate
electrons, promising revolutionary advances in optics.
Light can also be guided in arrays of circular rods [3]
and carbon nanotubes [4]. Interestingly, similar metallic
arrays can even hold ultracold matter [5].

Recently, we have shown that a suspended nanowire,
such as a metallic carbon nanotube, can support electronic
image states that are highly detached from its surface [6].
These ‘‘tubular image states’’ (TIS), which resemble very
stable molecular Rydberg states [7], owe their stability to
the balance between the Coulombic-like attraction and the
centrifugal repulsion associated with the circular motion of
the electron around the nanowire. We have examined TISs
in electric and magnetic fields and calculated their angular-
momentum relaxation times �l � 1–100 ns, due to scatter-
ing with flexural phonon modes of the tube [8]. The TISs
have been recently observed experimentally and their
properties found to be in agreement with theoretical pre-
dictions [9].

From the point of practical applications, it is crucial to
examine the existence of Rydberg-like image states in
periodic arrays of nanowires [10]. These Bloch states
could resemble light states in photonic band-gap systems
or atomic matter waves formed in optical lattices [11]. In
this work, we explore this attractive idea in a system
composed of an array of metallic nanotubes surrounded
by the electron image states, as schematically shown in
Fig. 1. The tubes are aligned along the z direction, with
their axes placed at the x � pd and y � qd positions
(p; q � 0;�1;�2; . . . ; with q � 0, for a 1D array).
Typically, d=a � 10–100 gives the ratio of the lattice
constant d with the tube radius a � 1 nm.

We start the discussion by recalling [6] the electrostatic
interaction between an electron of charge e, positioned at a
distance 
 relative to the center of a single nanowire.
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Treating it as a perfectly conducting cylinder of radius a,
the potential energy of the electron is
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where Im�x� and Km�x� are, respectively, the regular and
irregular modified Bessel functions of argument x and
order m. The limiting forms of the potential V�
� can be
found by expanding Km�x� for large and small arguments.
We can derive an approximate expression,
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which reasonably reproduces the exact interaction poten-
tial [6] but is easier to evaluate numerically.

Let us examine first a nontrivial example of single-
electron TIS around two metallic nanotubes. The distances

from the electron to the tube centers are 
1;2 �����������������������������������
�x� d=2�2 � y2

p
. Without loss of generality, we approxi-
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mate the electron-tube interaction by its Coulombic-like
form, V�
� � �e2=4j
� aj, valid close to the tubes.
Furthermore, we assume that the total interaction is a
sum of the electron’s interaction with each nanotube sepa-
rately, VT�
1; 
2� � V�
1� � V�
2�. This amounts ne-
glecting the relatively short-range interaction between the
induced image charge distributions in the two nanotubes.

The wave functions, 
�x; y; z� �  �x; y���z�, are sepa-
rable in the z direction. In the x and y directions, they can
be found from the Schrödinger equation, easily solvable in
bipolar coordinates, �x; y� ! ��; ��, given by the transfor-
mation x � b sinh���

cosh����cos��� , y � b sin���
cosh����cos��� . We chose

the free parameter b � a sinh��0�, where �0 �
cosh�1�d=2a� and a � 0:7 nm is the radius of the metallic
�10; 10� nanotube. Then the tube’s exterior spans the ranges
0 � � � 2� and ��0 <�< �0.

Since the interaction potential VT�
1; 
2� is symmetric
under the reflection about the � � � and � � 0 lines (the x
and y axes), the states possess a twofold reflection symme-
try. The  ��; �� wave functions (or their derivatives) thus
vanish at � � 0 and � � � to generate odd (or even) parity
eigenstates. Two parity quantum numbers, u � �, v � �,
associated with these reflections label the  u;v��; �� eigen-
states and the Eu;v eigenenergies.

We obtain them from the Schrödinger equation,
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where me is the electron mass. We solve Eq. (3) for the
wave functions,  u;v��; �� �

PI;J
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FIG. 2 (color online). Energies of two-tube image states with
u � � as a function of intertube separation d. The even (v � �,
dashed lines) and odd (v � �, solid lines) parity-state energies
split at small intertube separations. Selected curves are labeled
by the quantum numbers �n; l� of the single-tube image potential
states to which they converge as d! 1.
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panded in terms of products of B splines, with the expan-
sion coefficients cu;vi;j .

The calculated Eu;v eigenenergies are given in Fig. 2 as a
function of the nanotube separation d. At large d, they
correspond to energies of electronic wave functions local-
ized over a single tube, which can be numbered by the
principal quantum number n and angular momentum l [6].
As the intertube separation decreases, the higher excited
single-tube states start to overlap and become gradually
modified. The resulting pairs of degenerate states split into
double-tube states, with even and odd symmetries under
the tube exchange (v � �), in direct analogy to gerade
and ungerade symmetries in molecules. At smaller d,
single-tube states with different values of n and l mix,
but in some states the number of radial and axial nodes
can still be counted. Then level repulsion becomes impor-
tant and avoided crossings appear.

We also calculate the  u;v��; �� eigenfunctions and
transform them back to the Cartesian �x; y� coordinates.
They are chosen to be real, so at large d they correspond to
the superposition of the single-tube l and �l states,  jlj /
 l �  �l / �e�i�l � ei�l�=2 � cos�l��. In Fig. 3, we
FIG. 3. Left panels: gradual loss of detachment of the l � 6,
n � 2 wave function squared, as the two nanotubes get close:
(top) view on one tube for d � 200a; (middle) the entire wave
function for d � 80a; (bottom) detailed view of the right tube in
the last case. Right panels: states for much smaller tube separa-
tion, d � 10a. (top) The modified l � 0, n � 2 state. (middle)
An odd symmetry state with respect to reflection in the y axis.
(bottom) An even symmetry state.
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present the j u;vj2 densities for several typical wave func-
tions. In the left panels, we demonstrate the evolution of
the l � 6 and n � 2 state. At large tube separations,
d � 200a (top panel), it is detached from the tube’s sur-
face, similarly as in the single-tube case [6]. At lower but
still relatively big separations, d � 80a (middle and bot-
tom panels), this state partially collapses on the tubes, due
to asymmetric distortion of the attractive potential. The
same happens to all the single-tube states, as they get
closer. We thus expect that their lifetimes should be re-
duced [6], especially if their energies do not fall in the band
gap of the material [12]. In the right panel, we also display
more distorted states, obtained for d � 10a, showing
rather complex nodal structures.

We can proceed to investigate image states of a single
electron present in periodic arrays of parallel nanowires.
For a 1D array (see Fig. 1), the total potential fulfills
VT�x; y� � VT�x� d; y�. Thus, the transverse Bloch com-
ponents of the total wave functions 
�x; y; z� �
 m;k�x; y��kz�z�, with energies )m;k � Ekz , fulfill [13]

 m;k�x; y� � eikxfm;k�x; y� � eikxfm;k�x� d; y�: (4)

They can be obtained from the Schrödinger equation with
the Hamiltonian parametrized by k, as�
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An analogous equation, with the k � �kx; ky�wave vectors,
is used below for a 2D (square) lattice of nanotubes.

We solve Eq. (5) numerically, by a multidimensional
discrete variable representation algorithm [14]. We use the
single-tube potential (2) and include in VT the interaction
due to the central tube in the cell and its two (1D) or eight
FIG. 4 (color online). Selected eigenstates of the periodic 1D
array of nanotubes, described in the text.
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(2D) neighbors, while neglecting multiple reflection, as in
the two-tube case. The intertube separation is varied be-
tween d � 5–80 nm and a � 0:7 nm. The calculations are
done with a grid of spacing � for a fixed ratio �=d �
0:0075. Therefore, results obtained for larger lattice con-
stants (�50 nm) are less accurate. Nevertheless, our tests
show that the overall features in the wave functions are
well converged.

In Fig. 4 (upper panels), we present several typical wave
functions for a 1D nanotube array, with the lattice constant
d � 60 nm and k � 0. The unit cell fills the �d=2< x<
d=2 and �1< y<1 strip, where the tube is placed at the
origin. Like the two-tube states, wave functions in the 1D
lattice have two parity quantum numbers, corresponding to
reflections about the x and y axes. Many such states come
in pairs, which become degenerate in a square 2D lattice,
where they are connected by a �=2 rotation. This is the
case of the state displayed in the left panel, antisymmetric
along the y � 0 line, or the state with four angular nodes,
in the middle panel. In the right panel, we display a state
which is substantially detached from the tube surfaces,
despite the fact that the orbit does not fit well in the
elementary cell. This is remarkable, since the detachment
for the two-tube states is largely lost already at much
bigger separations, before the single-tube orbits of neigh-
FIG. 5 (color online). Selected eigenstates of the periodic 2D
lattice of nanotubes, described in the text.
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FIG. 6 (color online). The single-electron band structure of
image states in the vicinity of a 2D array of nanotubes, with d �
50 nm. The boundaries are defined by the � [k � �kx; ky� �
�0; 0�], X [k � ��=d; 0�], and M [k � ��d ;

�
d�] points. We present

the (50–73)rd bands. The square (circle) denotes the X (�) point
of the 68th (70th) band, with probability densities of the states
plotted in upper part of Fig. 5 right (left).
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boring tubes even ‘‘touch’’ (see Fig. 3 middle left). This
underlines the importance of periodicity for the preserva-
tion of detachment, where the central character of the
attractive force at each tube is largely preserved by the
presence of symmetrically placed neighboring tubes.

In general, higher excited states are separated further
from the tubes and their structure is more complex. On the
other hand, at separations larger than � d the wave func-
tions behave more like above a flat plane, as we show in the
lower panel of Fig. 4, with d � 20 nm and axes rotated by
�=2. The noncircular shape in the center appears here and
in other pictures, due to the relatively coarse grid used. We
can also study the k dependence of these Bloch states
inside their bands.

Let us examine first the states in square 2D arrays of
nanotubes, where the unit cell spans the region from �d=2
to d=2 on both axes. In Fig. 5, we display some pertinent
2D-wave functions. In the upper left panel, we show for
d � 50 nm the probability density of a state, of an ap-
proximate l � 6 and n � 2 nodal counting, that is de-
tached from the tubes’ surfaces. It corresponds to the �
point in Fig. 6. In contrast, as we move through the band to
the X point, the state partially collapses on the tubes’
surfaces (right panel). In the middle panels, we also display
two wave functions for d � 20 nm. In the left panel, we
show a (l � 6, n � 1) detached state, and in the right
panel, we give a state with a nodal structure of a quartic
symmetry. In the lower left and right panels, we display a
diagonally aligned state for d � 5 nm and a detached state
for d � 80 nm, respectively.

In Fig. 6, we present the single-electron bands for the 2D
lattice of nanotubes, for d � 50 nm and �=d � 0:01, cal-
culated between the �, X, and M points. Some bands are
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degenerate at the � point, due to their symmetry with the
�=2 rotation. The low-energy bands, corresponding to
states highly localized around each tube, are very flat and
well separated [see the (50–53)rd bands], so the associated
band gaps can block propagation of the Rydberg electrons.
Higher bands (m> 60) are broader and denser, so that
band gaps disappear and avoided crossings emerge. The
calculated band structure is quite well converged; i.e., by
changing �=d from 0.01 to 0.007 the energies of the (50–
74)th states changed by less than 0.5%. Besides the band-
state energies, the TISs are also determined by their life-
times, due to scattering on phonons and disorder in the
nanotube array [8].

The TISs were recently observed in isolated nanotubes
[9] and studies in nanotube arrays are in preparation. These
Bloch states should be tunable by changing the nearest
intertube separations di, since their energies scale roughly
as E � E0 �

P
i.i=di. We anticipate their applications in

guiding and storing of Rydberg-like electrons and for
information processing.
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