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Self-Organized Ordering of Nanostructures Produced by Ion-Beam Sputtering
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We study the self-organized ordering of nanostructures produced by ion-beam sputtering of targets
amorphizing under irradiation. By introducing a model akin to models of pattern formation in aeolian
sand dunes, we extend consistently the current continuum theory of erosion by IBS. We obtain new
nonlinear effects responsible for the in-plane ordering of the structures, whose strength correlates with
the degree of ordering found in experiments. Our results highlight the importance of redeposition and
surface viscous flow to this nanopattern formation process.
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Performance of many of the (opto)electronic devices
currently being designed based on arrays of nanostruc-
tures such as quantum dots requires a high degree of in-
plane ordering [1]. Currently, there is a formidable effort
to develop experimental techniques which are able to
provide highly ordered nanostructures in a self-organized
fashion [2]. These would allow for easy, low-cost and
large area fabrication of patterned structures. Among
these techniques, erosion by ion-beam sputtering (IBS)
at low energies [3] is a promising candidate [4–6], leading
to production of nanostructures of varying degrees of
uniformity and order onto diverse substrates such as
GaSb, InP, and Si. Therefore, detailed knowledge of the
basic mechanisms underlying erosion by IBS is crucial to
understand and control the associated manufacturing pro-
cess. From a fundamental point of view, the dynamics of
surfaces eroded by IBS exemplifies neatly the interplay of
fluctuations, external driving, and dynamic instabilities,
sharing many features with seemingly unrelated non-
equilibrium systems, such as aeolian sand dunes [7,8].
Thus, often, surfaces eroded by IBS spontaneously de-
velop submicrometric patterns (dots, pits, ripples) [9]
which, depending on experimental conditions, may dete-
riorate, and eventually lead to rough interfaces, with
fluctuations that display kinetic roughening [10].

A successful approach to surface erosion by IBS is
provided by continuum evolution equations for the sur-
face height, allowing access to time and length scales
typical of the corresponding pattern formation process.
This approach was pioneered by Bradley and Harper
(BH) [11], who, based on Sigmund’s linear cascade ap-
proximation of sputtering in amorphous or polycrystal-
line targets [3], derived a linear equation that describes
satisfactorily the main features of ripple formation under
IBS, such as their alignment with the ion beam as a
function of incidence angle. Additional features, such as
05=94(1)=016102(4)$23.00 016102
ripple stabilization, wavelength dependence with ion en-
ergy or flux, or production of dot or hole structures as a
function of bombardment conditions, required extensions
of BH’s approach [12,13], leading to a nonlinear equation
of the Kuramoto-Sivashinsky (KS) type. The KS equa-
tion provides the continuum description of interfaces
appearing in many diverse systems [12] in which a peri-
odic pattern develops with a preferred wavelength (i.e.,
the lateral size of the nanostructures) that evolves into a
disordered array. Thus, the crucial properties of homoge-
neity and in-plane short-range hexagonal ordering of the
nanostructures produced by IBS remain to be understood
[14]. Recent attempts have been made at extending the KS
equation to overcome such shortcomings [15,16] that do
not provide definitive answers since they either conflict
with symmetries of the system, or provide unphysical
solutions [17].

In this Letter, we present a new continuum model of
erosion by IBS. It leads to a physically and mathemati-
cally consistent generalization of the KS equation that
explains within a unified framework the varying degree
of homogeneity and order of the nanostructure arrays
produced [4–6] as a function of experimental parameters.
We exploit connections with ripple formation in sand
dunes [7], hinted at in [18], overcoming limitations of
previous theories [11–16].

During IBS, the bombarding ions penetrate the target
and induce complex collision cascades in the bulk. In
semiconductors like those studied in [4–6], the near-
surface layer is thus amorphized. Sputtering events occur
when surface atoms receive enough energy and momen-
tum to break their bonds and leave the target. We assume
that only a fraction of those atoms are redeposited at the
surface. Adatoms are available to relaxation mechanisms
such as surface diffusion that can be thermally activated
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or else be induced by the mentioned change in the local
viscosity of the material close to the surface [19].

In the spirit of the so-called hydrodynamic theory of
ripples in aeolian sand dunes [7], we define two coupled
fields, namely, R�x; t� and h�x; t�, where x � �x; y�. The
first one represents the fraction of surface atoms that are
not sputtered away, but rather, remain mobile along the
target surface. Analogously, h measures the height of the
surface neglecting the contribution from the fraction of
mobile atoms R. Time evolutions of R and h are coupled
through reaction and transport mechanisms [18]. Thus,

@th � ��ex � �ad; (1)

@tR � �1�	��ex � �ad � v � rR�r � J; (2)

where �ex and �ad are, respectively, the rates of excavation
and addition to the surface, v is the average velocity of
mobile atoms, and 	 � 0 is the fraction of adatoms that
detach irreversibly from the surface. Thus, system (1) and
(2) does not conserve the amount of material, in marked
contrast with typical conditions for aeolian sand dunes
[8]. Here, large redeposition of sputtered atoms corre-
sponds to the small 	 limit, while in the absence of
redeposition, 	 � 1. Considering that matter transport
along the surface is due to diffusion of mobile species, we
set �r � J � Dr2R, where D is the surface diffusivity.

In the absence of bombardment, the concentration of
mobile adatoms R changes due to thermal nucleation of
adatoms from the ‘‘immobile state’’ h, and subsequent
transport along the surface. Assuming nucleation events
are more likely in surface protrusions, we have �ad

noer: �

��1�R� R0
eq�1�

�	, analogous of the Gibbs-

Thompson relation, 
, being the mean surface curvature
and 
 the capillary length, assumed isotropic due to
amorphization by the ion beam. Here � is related to the
mean time between nucleation events and R0

eq is the mean
equilibrium concentration of mobile species for a flat
surface. In the presence of bombardment, �ad

noer: has to
be generalized to include the contribution of erosion to
surface mobility [19]. If the ions fall onto the target along
the x direction, forming angle � with the normal to the
uneroded target, we have, for small slopes [20,21],

�ex � �0�1��2�rh�
2	�1� �1 � rh� �2r

2h�

� �0��3�rh�2 � �4�@xh��r2h�	 � �r2h; (3)

�ad � �0�R� Req�1� �2r
2h�	; (4)

where Req and �i generalize parameters in �ad
noer: so that

�0 � ��1 � ��1
ex , �2 � 
�
ex, with ��1

ex and 
ex being
analogs of nucleation time and capillary length of erosive
origin [7,19]. In (3), �i 
 0 are related to geometric
factors that take into account the local variation of the
ion flux with the surface slopes [20]. E.g., for oblique
incidence, �1; �4 / sin�, and �3 � 1=2. Likewise, �2 

0 describes the local variation of the sputtering yield with
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the surface slope [22], assumed to have a local minimum
for normal incidence, while � 
 0 mediates erosion due
to direct impingement of the ions onto surface atoms
(knock-on sputtering) [3,9]. The positive sign of �2 im-
plements the physical instability inherent to Sigmund’s
theory, by which erosion is more efficient at surface
depressions than at surface protrusions [3]. Actually, the
analysis presented below will allow us to relate some of
these coefficients with the parameters characterizing
Sigmund’s distribution of energy deposition.

Our continuum model of IBS, Eqs. (1)–(4), provides a
way to introduce systematically all relevant physical
mechanisms for IBS, differing from that in [18] in a
number of features. Rather than considering its full solu-
tion, we proceed by deriving an effective equation for the
surface height. As in the experiments of Refs. [4–6], we
consider ions bombarding the target at normal incidence
(� � 0), thus �1 � �4 � jvj � 0 in (2) and (3) [23]. After
a transient time of order ��1

0 , Eqs. (1) and (2) have a
planar solution h0�t� � ��0	t, R0�t� � Req � �1�
	��0=�0. Perturbing this solution with periodic waves
of the form hk � ~hk exp�!kt� ik � x�, and an analogous
expression for Rk, amplification or decay of such pertur-
bations is characterized by the dispersion relation !k �

Req�0�2��	k
2 � ��1

0 �D�	A��1� ��1�	��k4	, with
��A=�Req�0�2� and A��0�2��. If A> 0, i.e., if sput-
tering is dominated by collision cascades rather than
knock-on events as occurs at low to intermediate energies
where Sigmund’s theory is applicable, there is a band of
unstable modes that grow exponentially fast, with a lin-
ear dispersion relation !k of the expected KS type. At
this stage, the surface morphology is dominated by a
periodic pattern whose wave vector maximizes !k. In-
plane isotropy under normal incidence implies depen-
dence of !k on k � jkj; thus the surface power spectral
density is maximum on a ring [6,14]. Stabilization of this
pattern occurs when its amplitude is large enough that
nonlinear effects are no longer negligible. Close to the
instability threshold, the rate of erosion is much smaller
than the rate of addition to the surface. Hence, � above,
which is the ratio between these two typical rates, is
small. We thus can perform a multiple scale expansion
by introducing time scales T1 � �t and T2 � �2t, and by
rescaling length scales as X � �1=2x. To lowest nonlinear
order O��� and as seen in the slow variables, surface
dynamics is described by (see [20] for details) [24]

@tH � ��r2H �Kr4H� �1�rH�2 � �2r
2�rH�2;

(5)

where H � h1 � �h2, and

�� A	; K� ���1
0 �D�	A��Req�0�2 �A�1�	�	;

�1 �	�0�1=2��2�; (6)

�2���0�1=2��2���1
0 ��D�	A��1�	��Req	�0�2	:
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FIG. 1. (a) Stationary-state morphology from the numerical
solution of Eq. (5) with � � 2K � 2, �1 � 0:1, �2 � 0:5,
lateral size L � 256. Units are arbitrary. Inset: 2D autocorre-
lation, showing high degree of short-range hexagonal order.
(b) Same as before, for �1 � 1, L � 512. (c) Same as (b) for
the KS equation, �2 � 0. (d) 3� 3 �m2 AFM scan of a Si
target irradiated as in Ref. [6] for 4 h.
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Equation (5) with a noise term, has been already em-
ployed in the growth of amorphous thin films [25]. In our
context, Eq. (5) has some important limits. First, in the
absence of ion bombardment, A � �0 � 0, �0 ! ��1,
and �2 ! 
, and in the original variables, (5) reduces
to Mullins’ equation for thermal surface diffusion [26],
@th � �DReq
r4h. In general, (5) and (6) include con-
tributions to surface diffusion that are both thermally
activated and induced by the ion beam as in [19].
Second, the BH limit corresponds to 	 � 1, i.e., no
redeposition. While in [18], the BH limit zeroes out the
k4 contribution to the analog of !k—thus making the
typical length scale of the dot structures remain unde-
fined within linear regime —here Eq. (5) recovers for
	 � 1, the equation obtained within BH’s approach to
Sigmund’s theory [12,16], including the fact that the
coefficients of the two nonlinear terms have the same
signs thus making the equation nonlinearly unstable
[16,17]. Thus, beyond its experimental relevance, redepo-
sition is crucial in order to make the theory consistent. On
the other hand, the BH limit allows us to extract the
phenomenological dependence of the parameters in our
model with characteristics of the collision cascades, such
as the ion penetration depth, a, and the longitudinal and
lateral widths !, and �, characterizing the Gaussian
decay of energy deposition [3]. Thus, for 	 ! 1 we
have, in the notation of [12], �0 � F, �2 � a�2=�2!2�,
�2 � 1��2=�2!2� ��2=�2!4�, Req�2 � �2=4, with
F / JE=!, where J and E are the average ion flux and
energy, respectively.

Equation (5) describes the evolution of the erosion
process. Initially, dynamics is controlled by the linear
terms, with the above dispersion relation !k, and a peri-
odic pattern develops, with characteristic wavelength

lc � 2'�2Req�2�D�	A��1� ��1�	��=�A	�	1=2; (7)

providing the typical size of the nanostructures that form.
When local slopes become large, the nonlinear terms in
Eq. (5) control the dynamics in an opposing way. While
the �2 term tends to coarsen the nanostructures in ampli-
tude and lateral size, similarly to its role in the coarsen-
ing of ripples on aeolian sand dunes [7], the nonlinearity
�1 tends to disorder the pattern leading to the paradig-
matic KS spatiotemporal chaos. Remarkably, �1�rh�2

seems to interrupt the coarsening process induced by
��2r

2�rh�2 and the stationary-state morphology con-
sists of domains of hexagonally ordered nanostructures
separated by defects. The density of these is a function of
the ratio r � �2=�1, whose r ! 0 limit in Eq. (5) leaves
us with the KS equation. In Fig. 1(a), we plot the
stationary-state morphology obtained by numerical inte-
gration of Eq. (5) for a relatively large ratio r � 5 [27].
The high degree of in-plane short-range hexagonal order-
ing is made clear by the height autocorrelation function,
shown in the inset of Fig. 1(a). The time evolution of the
dot pattern can be assessed in Fig. 2(a), in which the
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surface roughness (mean height square deviation) W�t�
versus t is shown for the same parameters as in Fig. 1(a).
In excellent agreement with measurements for nanodots
on GaSb [14], the roughness first increases exponentially
during development of the linear instability, attains a
maximum value after dots have coarsened to form a
densely packed array, and finally relaxes to a smaller
stationary value when defects among different dot do-
mains are annihilated. Times between linear instability
and maximum in the roughness correspond to nonlinear
coarsening of the dot structures, as seen in the plot of the
lateral correlation length *c�t� on the same panel. We
define *c�t� as the length scale provided by the first
secondary maximum of the height autocorrelation. As
seen in Fig. 2(a), *c�t� is constant during linear instabil-
ity, grows as t0:27�0:02, and saturates at long times, in
agreement with experiments on InP [5]. This interruption
of coarsening has been also observed on Si [6] and GaSb
[14].

Experimental conditions reflect in the value of r [28],
and can be such that this parameter is substantially
smaller. Dynamics is then closer to that of the KS equa-
tion. The intermediate coarsening regime narrows, and is
followed by kinetic roughening. A surface morphology
produced in these conditions [r � 0:5] is shown in
Fig. 1(b), which can be compared with an atomic-force
microscopy (AFM) scan [Fig. 1(d)] of a Si target irradi-
ated as in [6]. Again, agreement is excellent. The mor-
phology now differs appreciably from that of the KS
equation, Fig. 1(c). While for Eq. (5), a short-range
ordered pattern coexists with long-range disorder and
roughening, in the KS system, disorder of the cellular
structure is paradigmatic [see the height autocorrelations
in Figs. 1(b) and 1(c)]. Still, the time evolution of the
roughness in Fig. 2(b) (�), predicted by Eq. (5) for small r
values, is similar to the KS one, Fig. 2(b) (�): fast initial
growth is followed by much slower dynamics and satu-
-3



FIG. 2. (a) W�t� and *c�t� from Eq. (5) for Fig. 1(a). Dotted
line in the linear (coarsening) region grows as an exponential
(as t0:27). (b) W�t� for Fig. 1(b) ( � ), and Fig. 1(c) ( � ).
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ration to the stationary state. Such is also the experimen-
tal behavior found for nanostructures produced on Si [see
Fig. 3 in [6]]. Comparing the two plots in Fig. 2(b), for
small (nonzero) r values, the small-scale nonlinearity �2

is seen to stabilize the linear instability earlier, and leads
to smaller stationary roughness. Moreover, in contrast
with Fig. 2(a), Fig. 2(b) shows that for small or zero r
values, the roughness does not have a local maximum as a
function of time.

In summary, we have introduced a continuum model
for the formation of nanometric sized patterns by IBS.
The model accounts within a unified framework for ex-
perimental features of nanopatterns recently produced on
diverse materials. Moreover, it leads to an effective inter-
face equation providing new predictions. Thus, consider-
ing dependencies [3] on ion energy E of the features of the
distribution of deposited energy, a, �, !, the dot size lc
behaves, in the large redeposition limit 	 & 1, as lc �
�E� const	1=2. For small E, this implies lc is energy
independent, while lc � E1=2 for large enough energies.
Observations exist [14,29] compatible with such energy
dependence, although a systematic study assessing the
importance of redeposition would be highly desirable.

From a fundamental point of view, Eq. (5) also leads to
new results. Specifically, this is a height equation with
local interactions in which a pattern is stabilized with
constant wavelength and amplitude, in contrast with con-
jectures for 1D systems [30]. Although more theoretical
work is still needed [e.g., regarding the asymptotic prop-
erties of Eq. (5)], this suggests that in 2D patterns, coars-
ening dynamics is indeed more complex than in 1D [31].
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