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Dyakonov Surface Waves in Photonic Metamaterials
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We show that suitable photonic metamaterial structures can support lossless surface waves of the form
envisaged by Dyakonov. The idea we put forward is based on the birefringent properties of photonic
crystals in the long-wavelength limit, and uses the metamaterial anisotropy of the structures to meet the
resonance conditions at which Dyakonov surface waves exist. Implementation of this concept can lead to
the first experimental observation of Dyakonov waves, and might open the door to the realization of
widely tunable sensing devices based on the unique properties of such waves.
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Surface waves are a special type of waves that are
confined at the very boundary between two different media
[1,2]. They feature genuine physical phenomena as well as
prospects for far-reaching applications. In particular, by
their very nature, surface waves are unique tools to explore
the properties of material interfaces. This includes not only
intrinsic properties but also extrinsic effects, thus making
surface waves ideal tools for sensing physical, chemical,
and biological agents. For example, the widespread current
applications of surface plasmons range from subwave-
length microscopy, near-field optical tweezing, and en-
hanced light-matter interactions [3–6] to molecular
chemistry, proteomics, and cancer research [7–9].

A unique type of surface waves was discovered theo-
retically by Dyakonov more than a decade ago [10]. Like
plasmons polaritons, they exist at the surface of two differ-
ent materials, and should feature similar excitation and
detection properties. However, in contrast to plasmons,
Dyakonov surface waves exist in transparent media; thus
they are lossless. More importantly, they exist only under
rare conditions at the interface between two media when at
least one of them is anisotropic. In the simplest case of the
interface between a uniaxial crystal and an isotropic me-
dium, Dyakonov surface waves exist only for positive
birefringence (when the extraordinary refractive index of
the substrate, ne, is larger than the ordinary refractive
index, no), provided that the refractive index of the cover
isotropic medium, nc, verifies the inequality

ne > nc > no: (1)

This is a condition not easy to meet in practice with natural
materials, because the difference between the extraordi-
nary and the ordinary refractive indices of most transparent
materials is typically tiny; thus the band of allowed refrac-
tive indices nc is very narrow. Analogous stringent require-
ments hold for the existence of Dyakonov waves in all the
configurations that have been studied theoretically so far
[11–14]; hence, Dyakonov surface waves have never been
observed to date. In this Letter we expose that the required
existence conditions can be met in suitable photonic struc-
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tures operating at the long-wavelength limit. In addition,
and crucial from the point of view of future applications,
we show that, owing to the metamaterial properties of the
composites, the condition (1) can be met over a wide range
of refractive indices with high sensitivity. This suggests the
application of the phenomenon to a new type of widely
tunable sensing devices based on guided-to-leaky, or on-
off, plasmonic-type resonance transitions.

Different types of modes confined at the edge of pho-
tonic crystal structures are known to exist and to feature
rich physical phenomena and prospects of important ap-
plications [15–17]. However, in contrast to above-
mentioned modes, Dyakonov waves are linked to the full
anisotropic nature of the supporting surface. Suitable pho-
tonic crystal composites in the long-wavelength, or ho-
mogenization, limit are known to behave as effective
birefringent crystals [18–22]; thus they might provide
the anisotropy required for the formation of Dyakonov
waves. In this work we explore such a possibility for the
first time to our knowledge.

The first step of this program is the identification of
structures that are uniaxial and that exhibit positive bire-
fringence. One-dimensional photonic crystals are always
uniaxial, with the optical axis orthogonal to the dielectric
interfaces. Two-dimensional crystals can be both uniaxial
or biaxial [22]. Three-dimensional photonic crystals can be
designed to be isotropic, uniaxial, or biaxial. One finds that
one-dimensional geometries cannot exhibit a positive bi-
refringence. In periodic composites, the dielectric constant
for the electric field parallel to the dielectric interfaces
always is given by the weighted dielectric constant �"
[20]. In one-dimensional photonic crystal structures, this
electric field corresponds to the ordinary wave, and thus,
the effective ordinary refractive index is given by n2eo � �"
(subscript e indicates ‘‘effective’’). For a multilayer made
of two media with refractive indices n1 and n2, and filling
factor f, this quantity writes �" � n21f� n

2
2�1� f�.

Similarly, the effective extraordinary refractive index is
given by the weighted reciprocal dielectric constant n2ee �
� �	��1 [15], which writes �	 � f=n21 � �1� f�=n22. It fol-
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lows from these expressions that nee < neo; thus the com-
posite features a negative birefringence. Thus, here we
address two-dimensional structures, with the general lay-
out depicted in Fig. 1. To elucidate the effective refractive
indices of the structure, we use the homogenization ap-
proach in the long-wavelength limit outlined in Ref. [22].
Homogenized photonic crystals whose unit cell has a third-
or higher-order rotational axis behave as uniaxial crystals.
The rotational axis parallel to the rods is the effective
optical axis. Then, the effective extraordinary refractive
index is given by n2ee � �". For the ordinary refractive index
of the homogenized structure, one finds

n2eo �
�
�	�

1

2

X
~G; ~G0

�0

~G � ~G0	� ~G�	�� ~G0�M�1� ~G; ~G0�

�
�1
;

(2)

where ~G is the reciprocal vector of the two-dimensional
lattice, and M� ~G; ~G0� � ~G � ~G0	� ~G0 � ~G�. This quantity
has to be evaluated numerically, taking into account the
properties of the unit cells. One then finds that the photonic
structures considered here always feature a positive bire-
fringence. This property is guaranteed by the Weiner
bounds [20] that give the maximum value of an effective
dielectric constant as "eff � �". In Fig. 2 we plot the effec-
tive ordinary and extraordinary refractive indices of the
structure as a function of the filling factor for composites
with cylindrical and square holes, in silicon and in silica.
The plot directly exposes the main advantage afforded by
photonic composites in comparison to natural uniaxial
crystals for the purpose in hand: nee can be made much
larger that neo. Also it shows the possibility of engineering
the anisotropic properties of the structure not only by
changing the material but also by changing the unit cell
geometry and filling factor.

Dyakonov surface waves are hybrid, with all the field
components. The fields in the cover and substrate can be
written as ~Ei� ~r; t� � ~Ei�x� exp	j� ~� ~r�!t�
. Here ~� ~r �
k0N�y sin�� z cos��, where k0 is the free-space wave
x z

y

θ

FIG. 1. Sketch of the particular structure analyzed here, con-
sisting of a cover made of an isotropic material and a substrate
photonic crystal. The lattice constant a of the 2D photonic
crystal is much smaller than the excitation wavelength. The
concept holds for different cell shapes and for general anisotro-
pies.
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number, N is the effective index of the guiding
surface modes, and � is the propagation angle with
respect to the optical axis. The complex amplitude
~Ei must be evanescent in the x direction. The evanes-
cent amplitude is a superposition of extraordinary and
ordinary modes, namely, ~Es�x� � ~Eos exp	k0�osx
 �
~Ees exp	k0�esx
, where �os �

��������������������
N2 � n2eo

p
and �es �����������������������������������������������������������������������

N2	sin2�� �n2ee=n2eo�cos2�
 � n2ee
p

. Similarly, the field
amplitude in the cover writes ~Ec�x� � ~Ec exp	�k0�cx


with �c �
������������������
N2 � n2c

p
. Finally, the boundary conditions at

the interface yield the eigenvalue equation for the existence
of guided surface waves [10],

tan 2� �
�os��c � �os��n

2
eo�c�es � n

2
c�

2
os�

n2eo��c � �es��n
2
eo�c � n

2
c�os�

; (3)

an expression that relates the propagation angle, the cover
refractive index, and the structural properties of the pho-
tonic crystal.

The central physical result dictated by (3) is that hybrid
surface waves exist only within an interval of propagation
angles �, typically narrow, which in the physical setting
addresses here is implicitly related to the properties of the
photonic structure through the reciprocal vectors of the
photonic lattice appearing in (2). Such an interval is given
by the cutoff conditions for resonance with the continuous
spectrum. The cutoff for radiation into the cover continu-
ous spectrum, namely, �c � 0, gives the minimum allowed
angle, �min, for Dyakonov waves to exist, while the maxi-
mum allowed angle, �max, is obtained for the cutoff for
coupling into the substrate continuous spectrum of extraor-
dinary polarized waves, given by �es � 0. The allowed
interval �� � �max � �min is found to be approximately
centered at the propagation angle where both �es � 0 and
�c � 0, namely,
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FIG. 2. Effective ordinary and extraordinary refractive indices
of homogenized structures, calculated by solving numerically
Eq. (2), as a function of the filling factor. The solid lines
correspond to a unit cell of cylindrical holes (n1 � 1) embedded
in Si (n2 � 3:5) and SiO2 (n2 � 1:55). Unit cells with different
geometries but the same filling factor produce identical results
for nee, while neo can change. This is shown by the dashed line,
corresponding to a unit cell of square holes embedded in Si.
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�0 � sin�1

�
nee
nc

��������������������
n2c � n

2
eo

n2ee � n
2
eo

s �
; (4)

an expression to be evaluated numerically in terms of the
filling factor using (2). The parameters �0 and �� can be
modified by varying the properties of the photonic crystal.
This possibility is illustrated in Fig. 3. Note that �� can
amount to a few degrees, while with most natural uniaxial
crystals the allowed interval might be 2 orders of magni-
tude smaller [13].

Dyakonov surface modes excited on photonic metama-
terials seem to be particularly well suited for versatile
plasmons-polariton type sensing. This concept is based
on the condition (4), which suggests the use of Dyakonov
waves to detect the presence of extrinsic agents, like
liquids or biological samples, by placing them on top of
the metamaterial. The potential of this possibility is illus-
trated in Fig. 4, which shows how the central allowed
propagation angle varies with the cover refractive index
for five illustrative filling factors. The plot shows that by
varying continuously the filling factor one can tune the
central existence angle to match any desired cover
refractive-index range.

The experimental implementation of the concept put
forward in this Letter can be achieved in a photonic peri-
odic structure where the homogenization approach holds.
Such a regime is encountered when the slope of the wave
dispersion relation is linear, e.g., for wavelengths below
half the first photonic band edge, when the lattice constant
is sufficiently smaller in comparison to the operating wave-
length, i.e., �� a. Meeting such a condition at optical
wavelengths in the interval 1–5  m requires lattice perio-
dicities and cell sizes in the range 0:1–1  m, while with
GHz radiation the homogenization approach is expected to
hold with lattice sizes of the order of the mm. On the other
hand, the penetration depth �ms � �0=�2"�ms�, with m �
0.0 0.2 0.4 0.6 0.8
45

48

51

54

57

0

min

max

θ

θ

θ

Pr
op

ag
at

io
n 

an
gl

e 
θ

Filling factor f

FIG. 3. Allowed band of propagation angles for the Dyakonov
surface waves, as a function of the filling factor of a photonic
structure made of cylindrical hole cells in silicon. The dashed
lines stand for the maximum and minimum cutoff angles. The
solid line is the central angle, given by (4). The refractive indices
nee and neo are given by Fig. 2, and in this particular plot we set
nc � �nee � neo�=2.
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e; o, of the evanescent tails associated with the Dyakonov
wave inside the photonic structure has to be much larger
than the cell size and the metamaterial periodicity, i.e.,
�ms � a.

To elucidate whether such is the case and to examine the
degree of confinement of the predicted surface waves, we
comprehensively studied the evanescent decay rate of the
Dyakonov waves supported by a variety of photonic meta-
materials. We found that, when �� a, the condition
mentioned above always holds. An illustrative example is
shown in Fig. 5(a), which displays the variation of the
penetration depths �es and �c, as a function of the propa-
gation angle of a typical surface wave, inside the interval of
allowed propagation angles. Notice that even near the cut-
off condition for resonance with the continuum spectrum in
the cover, when the penetration depth of the wave inside
the metamaterial is the smallest, �es is of the order of the
wavelength. Thus, as long as the condition �� a is ful-
filled, the surface wave extends over many lattice cells, as
required. Figure 5(b) further clarifies the point. The plot
shows the minimum value of �es that occurs at the cutoff
for coupling into the cover continuous spectrum and that is
given by �es;min � �0=	2"�es�N � nc; � � �min�
, as a
function of the cover refractive index, for all the filling
factors considered in Fig. 4. As is visible in the plot, the
higher the cover refractive index, thus the lower the filling
factor of the photonic structure, the more the evanescent
wave extends into the structure, hence the more justified
the homogenization approach we used in here to derive the
existence of the Dyakonov waves.
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FIG. 4. Central allowed propagation angle versus cover refrac-
tive index for different filling factors. The data correspond to a
photonic structure consisting of cylindrical rods in silicon, but
qualitatively similar results are obtained for other geometries
The ordinary and extraordinary effective indices for each curve
are the following: nee � 1:922 and neo � 1:350 (f � 0:76);
nee � 2:380 and neo � 1:956 (f � 0:57); nee � 2:818 and
neo � 2:43 (f � 0:38); nee � 3:111 and neo � 2:824 (f �
0:23); nee � 3:312 and neo � 3:144 (f � 0:11). In all cases,
the maximum refractive index for the cover corresponds to nee
and the minimum to neo. The dashed lines, barely visible in most
cases, display the values of �max and �min.
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FIG. 5. (a) Evanescent wave penetration depth, �es;�c into a
photonic crystal substrate and cover for a structure with filling
factor f � 0:74 and a cover nc � 1:55. (b) Minimum depth
�es;min of the evanescent wave inside the photonic crystals as a
function of the cover refractive index, for the different filling
factors considered in Fig. 4.
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A final remark is in order: According to Fig. 5(a), favor-
able conditions to excite the Dyakonov surface waves in
actual photonic metamaterials appear to occur near the
cutoff condition for coupling with the extraordinary con-
tinuous spectrum. Importantly, as the plot also shows,
under such conditions the penetration depth of the surface
wave in the cover is the smallest; therefore, the spatial
sensitivity of the waves to refractive-index surface pertur-
bations is the highest. This immediately suggests the pos-
sibility to employ the corresponding waves to interrogate
the surface properties with subwavelength resolution.

To conclude, we stress that the key concept put forward
here is the exploitation of the anisotropy of photonic
metamaterials to meet the special conditions at which
Dyakonov surface waves exist. To posit the physical
idea, here we focused in the long-wavelength, or homo-
genized limit, but the exploration of the existence of
Dyakonov-type resonance phenomena for progressively
shorter wavelengths is a fascinating question that immedi-
ately comes to mind and that needs to be addressed with
more involved mathematical approaches. We finally notice
that Dyakonov waves exist in more complex settings that
01390
those examined here, such as in ultrathin nanoscale wave-
guides or in nonlinear self-focusing materials [23], systems
where the concept shown here is expected to hold too.
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