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We solve a long standing problem with relativistic calculations done with the widely used multi-
configuration Dirac-Fock method. We show, using relativistic many-body perturbation theory (RMBPT),
how, even for relatively high-Z, relaxation or correlation causes the nonrelativistic limit of states of
different total angular momentum but identical orbital angular momentum to have different energies. We
show that only large scale calculations that include all single excitations, even those obeying Brillouin’s
theorem, have the correct limit. We reproduce very accurately recent high-precision measurements in F-
like Ar, and turn then to a precise test of QED. We obtain the correct nonrelativistic limit not only for fine
structure but also for level energies and show that RMBPT calculations are not immune to this problem.
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Relativistic atomic structure codes, mostly multiconfi-
guration Dirac-Fock (MCDF) packages, are now of wide-
spread use in many sectors of physics, and the need for
reliable, relativistic calculations is stronger than ever (see,
e.g., [1] for examples in Astrophysics). However, the diffi-
culties of doing reliable calculations are numerous and still
largely underestimated. For example, a puzzle that was
noted already 22 years ago [2] has never been solved,
although even in very simple calculations it may lead to
wrong energy values. In Ref. [2] it was shown that
relativistic self-consistent field procedures do not produce,
in a number of cases, the correct nonrelativistic (N.R.)
limit of zero for the fine-structure splitting (FSS) when
the speed of light is tuned to infinity. As a remedy, Ref. [2]
suggested explicit calculation of this nonrelativistic offset
and subsequent subtraction of it from the relativistic result,
although no justification for the procedure was provided.
Moreover, this paper said nothing on how to correct indi-
vidual energy levels. Here we will penetrate the origin of
the nonrelativistic shift using the tools of perturbation
theory and advanced MCDF calculations. We use these
tools to show the role of relaxation in the N.R. offset, and
prove that the inclusion of specific monoexcitations in the
MCDF basis removes it. We also provide justification to
the subtraction procedure and show that not only the FSS
needs to be corrected, but also the level energy, e.g., when
transitions between different shells are studied. It is also
worth noting that this problem appears in the optimized
level scheme when each level energy and wave function is
optimized separately. This scheme is used only when the
highest accuracy for correlation is required. Often the
average level (AL) scheme is used, in which the same
J-average wave function is used to calculate the energy
of all FS components. In the AL scheme the N.R. offset
does not appear, but the accuracy is much lower.

We will concentrate on the ground state configuration of
an F-like ion that was used as a model system already in
05=94(1)=013002(4)$23.00 01300
Ref. [2], as accurate measurements have been performed
very recently [3]. With high experimental accuracy, even
for Z � 18, it is important to be aware of this problem
which seriously affects the comparison with experiment on
the present day level. We will further present accurate
calculations of the fine-structure splitting in F-like argon
both with relativistic many-body perturbation theory
(RMBPT) and with the MCDF method. It is shown that
by comparison with accurate experimental results [3] it is
possible to test the calculations on self-energy and other
radiative corrections in a true many-electron surrounding.

With RMBPT the fine-structure splitting in an F-like
system is calculated as the binding energy difference be-
tween the 2p1=2 and the 2p3=2 electron in the correspond-
ing Ne-like system. The lowest order approximation of this
binding energy is the negative of the orbital energy of the
removed electron in the Hartree-Fock approximation. The
remaining electrons are at this stage considered as frozen in
their orbitals in spite of the removal of one electron. The
most important correction to this first approximation is the
relaxation of the electrons due to the presence of the hole.
The term relaxation usually denotes the correction found
by a single configuration restricted Hartree-Fock (or Dirac-
Fock in the relativistic case) calculation in the presence of
the hole. The nonrelativistic shift has its origin already at
this level, and we will now concentrate on this shift and
postpone the discussion of higher order corrections.

To analyze the relaxation for a one-hole state with
perturbation theory, it is natural to start from the closed
shell system and systematically correct for the removal of
one electron. Figure 1 shows the contributions entering in
second order. Figures 1(a) and 1(b) show fluctuations to
two holes and one excited orbital and Figs. 1(c) and 1(d)
true double excitations. The relaxation, i.e., the effects
included by a single configuration restricted Hartree-
Fock calculation, is in perturbation theory part of
Figs. 1(a) and 1(b); the ones where the hole is not fluctuat-
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FIG. 1. Illustration of the second order energy contributions to
a one-hole system. Diagrams (a) and (b) show fluctuations to two
holes and one excited orbital and diagrams (c) and (d) double
excitations (correlation). Down-pointing single arrows denote
core orbitals, down-pointing double arrows denote the hole, and
up-pointing arrows denote excited orbitals.
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ing and the excitation from an orbital preserves its angular
symmetry. The lowest order relaxation correction to an
orbital b can consequently be written

�relax
b �‘s�‘b;js� jb���

Xexc

s

j sihfhsg jV12 j fhbgi
"b�"s

; (1)

where h denotes the removed electron, the curly brackets
antisymmetrization, V12 the two-electron interaction, and
the minus sign is due to the removal of h. The energy
corrections are then calculated as

Xcore

b

hfbhg j V12 j f�relax
b hgi: (2)

In this way, all types of diagrams in Figs. 1(a) and 1(b) with
either orbital a � h (and b � c) or c � h (and b � a) and
‘s � ‘b and js � jb are included, i.e., the single excita-
tions that preserve the angular structure. It can be noted
that these single excitation contributions form a class of
diagrams that can be summed until convergence in an
iterative scheme; see, e.g., Refs. [4,5]. Here we will not
pursue this line, however, since our purpose is to analyze
the relaxation in the nonrelativistic limit and show why a
state with a hole in n‘j�‘�1=2 and one with a hole
n‘j�‘
1=2 do not reach the same energy in this limit. For
this, it is sufficient to study relaxation in second order.

As an example, take the diagram in Fig. 1(a) with orbital
a � h and ‘s � ‘b, a typical relaxation contribution. The
orbitals used to evaluate the diagram are solved using the
Hartree-Fock potential from the closed shell core, and the
radial part of the 2p1=2 and the 2p3=2 orbital will be
identical when we let c ! 1. The problem comes instead
from the spin-angular part. Since

j ‘m‘smsi �
X

jmj

j �‘s�jmjih�‘s�jmj j ‘m‘smsi; (3)

decoupling of spin and orbital angular momenta cannot be
done without summing over all total angular momenta, j.
An unambiguous way to see how this influences our ex-
ample in Fig. 1(a) with orbital a � h and ‘s � ‘b is to
compare the angular contribution nonrelativistically and
relativistically. The electron-electron interaction is ex-
pressed as
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where k denotes the rank of the spherical tensor operator C,
which works on the orbital part of wave functions.
Nonrelativistically, the angular part can be evaluated as
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h‘hkCkk‘hi2h‘bkCkk‘bi2: (5)

This is in fact identical to the following expression in the
coupled space where two extra sums appear over inter-
mediate total angular momenta:
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2
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That these two expressions give the same result can be
understood by standard angular momentum algebra
techniques.

In a restricted Dirac-Fock calculation there will be no
sums over intermediate angular momenta. Instead, only
jh � jh0 is allowed; i.e., the hole is not allowed to fluctuate
to the other fine-structure component, and jb0 � jb is re-
quired: i.e., the corrections to orbital b do not change its
angular structure. The spin-angular part used is thus

Xcore

b

X

k

1

2k
 1

1

2jh 
 1
hjhkCkkjhi2hjbkCkkjbi2; (7)

which will clearly not produce the same result as Eq. (5)
and which further cannot give identical results for, e.g.,
jh � 1=2 and jh � 3=2, which is easily seen from the k �
2 contribution which is zero for jh � 1=2 but not for jh �
3=2. The difference can also be readily demonstrated nu-
merically for a system as F-like neon where the second
order contribution, Eq. (2), to the relaxation gives an un-
physical fine-structure offset of 0.024 eV in the c ! 1
limit. Following the recipe from Ref. [2] and correcting the
result calculated with the true value of c with this offset, we
obtain a relaxation contribution to the fine-structure split-
ting of �0:058 eV. After iteration of the relaxation con-
tributions [4,5] the corrected value reaches �� 0:050 eV,
in line with the MCDF Coulomb relaxation contribution of
�� 0:049 eV, listed in the third section of Table I. This
value has been corrected using the same procedure. The
small difference is probably due to small differences in the
classification of relaxation and correlation contributions.
The lesson here is that since the summation over all
possible couplings of spin and orbital angular momenta
of the intermediate states are necessary to reproduce the
uncoupled situation a correct nonrelativistic limit cannot
be achieved with any single configuration self-consistent
field calculation. In other words, still for the system under
consideration, one has to include more than one configu-
ration relativistically to reproduce the single configuration
nonrelativistic result in a relativistic framework. In
RMBPT the full contribution from Figs. 1(a) and 1(b)
produces no N.R. offset, but any attempt to speed up the
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TABLE I. Summary of the contributions to Be-like Ar FSS. All calculations use the 2002
values for fundamental constants [6,7] (eV). Experimental values are from wavelength provided
in Ref. [3] converted to vacuum values using [8].

2p1=2 2p3=2 �

Contributions
Ne-like DF orbital energy 426.500 02 424.132 11 2.367 91
� DF Breit �0:226 59 �0:135 76 �0:090 83
Higher order retardation �0:000 11 0.000 79 �0:000 90
QED correlation 0.013 53 0.007 55 0.005 98

Contributions specific to RMBPT
Second order core-core, Coulomb �4:485 09 �4:425 87 �0:059 21
core-core, Breit �0:011 87 �0:008 14 �0:003 73
Correlation, Coulomb 2.567 26 2.557 63 0.009 62
Correlation, Breit 0.023 91 0.020 18 0.003 73
Higher order contribution (Coul. 
 Breit) 0.165 59 0.158 85 0.006 74
� DF-Breit orbitals 0.001 98 0.000 43 0.001 56

Total (RMBPT) 424.548 63 422.307 77 2.240 86
Experiment 2.240 10

Contributions specific to MCDF (N.R. offset subtracted)
Relaxation (Coulomb) �3:108 00 �3:059 31 �0:048 69
Relaxation (Breit) �0:004 06 �0:003 14 �0:000 92
Correlation (Coul. ! 5g) 1.424 66 1.396 04 0.028 62
Correlation (Breit ! 5g) �0:013 59 0.007 41 �0:021 00

Total (MCDF) 424.585 85 422.345 69 2.240 16
Experiment 2.240 10
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convergence of the perturbation expansion by singling out
the important subclass that involve only single-particle
energy denominators as in Eq. (1) will do so. The
RMBPT results shown in Table I are obtained without
any such procedure and have a correct nonrelativistic limit
by construction.

With several configurations included it should, in prin-
ciple, be possible to reach the correct nonrelativistic limit;
in practice, one can, however, generally not achieve this in
a truncated calculation. In practice, the number of configu-
rations has to be truncated for all but the smallest systems.
It is common to truncate after double excitations from the
dominating configuration, but just as double excitations are
needed to be added to the single excitations to obtain the
correct nonrelativistic limit, triple excitations will be
needed to be added to corresponding double excitations
and so on. Since higher multiple excitations are less im-
portant, the remaining offset will, however, decrease
steadily.

We now proceed to demonstrate the vanishing of the
nonrelativistic offset in an essentially complete MCDF
calculation. In the present calculation we have added to
the original configuration all single and double excitations
up to a given maximum n and ‘. Note that one has to be
careful in considering the meaning of single and double
excitations. For example, the 1s22s22p43p is a single
excitation in the LS coupling sense. Yet in jj coupling it
gives rise to five configurations in the J � 1=2 case, two of
which are double excitations in the jj sense (2p1=22p

4
3=2 !
01300
2p2
1=22p

2
3=23p1=2 and 2p2

1=22p
2
3=23p3=2). We went from 3d

to 5g for the case with a normal speed of light, and up to 6h
for the nonrelativistic limit. This represents, respectively,
299, 1569, 4339, and 9127 fully relaxed jj configurations
for the J � 1=2 case, and 456, 2541, 7356, and 15 915 for
the J � 3=2. The calculations are repeated with different
lists of configurations. In one group of calculations, we
include all single and double excitation in the jj sense,
except for the ‘‘Brillouin single excitations,’’ i.e., those that
should contribute only in third order, as stated by
Brillouin’s theorem [9–11]. These excitations are often
excluded since they complicate the numerical conver-
gence. Again we use here Brillouin’s theorem in the jj
sense; i.e., we exclude all configurations transformed from
the initial one by replacing an orbital with quantum num-
bers n, � by one with n0, �, where � is the Dirac angular
number. In a second group we include all single and double
excitations. In both groups, we do calculations once with
only the Coulomb interaction between electrons used in the
evaluation of wave functions and energies, and once with
the full Breit interaction in the evaluation of wave func-
tions and mixing coefficients. This allows one to include
high-orders of the Breit interaction in the calculation. In
each group the Coulomb only calculation is done also a
second time with a large value for the speed of light. The
evolution of the N.R. shift as a function of the maximum
excitation used in the MCDF process is plotted in Fig. 2,
for both F-like and Be-like ions, to show the generality of
what is observed: the N.R. offset tends to a nonzero con-
2-3



TABLE III. Change in the ground state (J � 3=2) correlation
energy due to Brillouin single excitation.

Configuration No Brillouin All single Difference

corr: ! 3d �5:1792 �5:1989 �0:0196
corr: ! 4f �7:7349 �7:7603 �0:0255
corr: ! 5g �8:6551 �8:6871 �0:0320
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FIG. 2 (color online). A comparison of the nonrelativistic off-
set for Be-like and F-like argon, evaluated including all single
excitations, or only those not obeying Brillouin’s theorem.
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stant value when Brillouin configurations are excluded,
and to zero when all single excitations are included.

The different contributions to the MCDF result and the
variation of the correlation energy and nonrelativistic off-
set with and without Brillouin configurations are presented
in Table II. When comparing both results, it is clear that
excluding Brillouin single excitations and then subtracting
the N.R. offset leads to the same result as including the
Brillouin configurations. The agreement with experiment
and with RMBPT results is excellent in both cases, even
though the quality of the convergence when including all
single excitations is not as good as when Brillouin ones are
excluded. Moreover, the inclusion of all single excitations
also enables one to correct the energy of a level as shown in
Table III, which was not possible with the subtraction
method. Finally, we note that the evaluation of the radiative
corrections, the self-energy screening (SES) with the help
of the Welton approximation [12], leads to a very good
agreement with experiment.
TABLE II. Contributions to the MCDF FSS energy affected by
the N.R. offset (eV). ‘‘�E doub. Exc. ! n � i’’: correlation
energy for the configuration space which includes all double
excitations up to principal quantum number n � i. Rel. val.:
relativistic value; N.R. Off.: offset obtained at the nonrelativistic
limit.

Rel. val. N.R. off. Difference

Dirac-Fock Coulomb 2.316 26 �0:001 48 2.317 74
Brillouin single excitations excluded

�E Exc: ! n � 3 �0:018 55 �0:020 86 0.002 31
�E Exc: ! n � 4 �0:014 21 �0:019 26 0.005 05
�E Exc: ! n � 5 �0:016 41 �0:022 47 0.006 06
Total 2.216 21 �0:023 95 2.240 16
Difference with exp �0:023 89 0.000 06

All single and double excitations included
�E Exc: ! n � 3 �0:003 71 �0:005 82 0.002 11
�E Exc: ! n � 4 0.004 45 �0:000 37 0.004 82
�E Exc: ! n � 5 0.006 61 0.000 75 0.005 86
Total (SES Welton) 2.239 23 �0:000 73 2.239 96
Difference with exp �0:000 87 �0:000 14
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In conclusion, we have proven, by comparing RMBPT
and MCDF results, that the N.R. offset is due to relaxation
and should go away when doing a complete calculation.
We then showed that, in the MCDF case, the offset is going
to zero if a large enough configuration space is used, but
only if all single configurations are included. In practice,
excluding Brillouin single excitations and then subtracting
the N.R. offset leads to the same value, but numerical
convergence of the self-consistent field process is much
easier in the latter case. Finally, failing to account for the
N.R. offset leads to poor results, even at a moderately large
Z, a fact that may not have received enough attention in
many MCDF calculations. The present work also shows
that similar problems can happen in RMBPT calculations
if subclasses of important effects are singled out and by
themselves are treated to higher order. The improved con-
vergence will then come at the expense of an N.R. offset.
This fact had not been recognized before.
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