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We present the first three-flavor lattice QCD calculations for D! �l� and D! Kl� semileptonic
decays. Simulations are carried out using ensembles of unquenched gauge fields generated by the MILC
Collaboration. With an improved staggered action for light quarks, we are able to simulate at light quark
masses down to 1=8 of the strange mass. Consequently, the systematic error from the chiral extrapolation
is much smaller than in previous calculations with Wilson-type light quarks. Our results for the form
factors at q2 � 0 are fD!�� �0� � 0:64�3��6� and fD!K� �0� � 0:73�3��7�, where the first error is statistical
and the second is systematic, added in quadrature. Combining our results with experimental branching
ratios, we obtain the Cabibbo-Kobayashi-Maskawa matrix elements jVcdj � 0:239�10��24��20� and
jVcsj � 0:969�39��94��24�, where the last errors are from experimental uncertainties.

DOI: 10.1103/PhysRevLett.94.011601 PACS numbers: 13.20.Fc, 12.38.Gc
Semileptonic decays of heavy-light mesons are of great
interest because they can be used to determine Cabibbo-
Kobayashi-Maskawa (CKM) matrix elements such as
jVubj, jVcbj, jVcdj, and jVcsj. The accuracy of one of the
most important, jVubj, is currently limited by large theo-
retical uncertainty [1]. Lattice QCD provides a systemati-
cally improvable method of calculating the relevant
hadronic amplitudes, making the determination of jVubj
and other CKM matrix elements more reliable and precise.

Semileptonic D meson decays, such as D! Kl� and
D! �l�, provide a good test of lattice calculations, be-
cause the corresponding CKM matrix elements jVcsj and
jVcdj are known more accurately than jVubj [1]. The decay
rates and distributions are not yet very well known, but the
CLEO-c experiment plans to measure them with an accu-
racy of a few per cent. Furthermore, measurements of
leptonic and semileptonic D�s� decays can be combined
so that the CKM matrix drops out, offering a direct and
stringent check of lattice QCD.

Recently, dramatic progress has been achieved in lattice
QCD, for a wide variety of hadronic quantities.
Reference [2] showed agreement at the few percent level
between three-flavor lattice QCD and experiment for f�,
fK, mass splittings of quarkonia, and masses of heavy-light
05=94(1)=011601(5)$23.00 01160
mesons. The main characteristics of these quantities are
that they have at most one stable hadron in the initial and
final states, and that the chiral extrapolation from simulated
to physical light quark masses is under control. This class
can be called ‘‘gold plated’’ [2], and many of the lattice
calculations needed to test the Standard Model are in this
class. The work reported here is part of a systematic effort
to calculate the hadronic matrix elements needed for lep-
tonic and semileptonic decays, and for neutral meson
mixing [3,4].

In this Letter we report results for D! Kl� and D!
�l� semileptonic decay amplitudes. All previous lattice
calculations of heavy-light semileptonic decays have been
done in quenched (nf � 0) QCD. In addition to quenching,
they also suffered from large uncertainties from the chiral
extrapolation and, in some cases, from large heavy-quark
discretization effects. Here we bring all three uncertainties
under good-to-excellent control. Indeed, this Letter
presents the first calculation in unquenched three-flavor
lattice QCD, where the effect of dynamical u, d, and s
quarks is correctly included.

The relevant hadronic amplitude hPjV�jDi �P � �;K�
is conventionally parametrized by form factors f� and f0
as
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hPjV�jDi � f��q2��pD � pP 	
�� � f0�q2�
� (1)

where q � pD 	 pP, 
� � �m2
D 	m2

P�q
�=q2. The differ-

ential decay rate d�=dq2 is proportional to jVcxj2jf��q2�j2,
x � d; s. (A contribution from f0 is proportional to the
lepton mass squared.) We calculate f� and f0 as a function
of q2 and determine the decay rate � and the CKM matrix
jVcxj by integrating jf��q

2�j2 over q2. Preliminary results
have been reported in Ref. [4,5].

Our calculations use ensembles of unquenched gauge
fields generated by the MILC collaboration [6] with the
‘‘Asqtad’’ improved staggered quark action and the
Symanzik-improved gluon action [7]. The results are ob-
tained on the ‘‘coarse’’ ensembles with sea quark masses
amsea

l � 0:005, 0.007, 0.01, 0.02, and 0.03. The gauge
coupling is adjusted to keep the same lattice cutoff (a	1 

1:6 GeV) and volume [L3 � T 
 �2:5 fm�3 � 8:0 fm].
Each ensemble has about 400–500 configurations. For
more information on these ensembles, including autocor-
relations, see Ref. [6].

For the light valence quarks, we adopt the same stag-
gered action as for the dynamical quarks. The valence light
(u, d) quark mass mval

l is always set equal to msea
l . The

valence strange quark mass is amval
s � 0:0415, which is

slightly larger than the physical value ams � 0:039 (at this
lattice spacing) determined from fixing the masses of the
light pseudoscalars [6]. We have repeated the calculations
with a strange quark mass slightly too small, and find a
negligible difference. Since the computation of the stag-
gered propagator is fast, we can simulate with ml as low as
ms=8. Consequently we are able to reduce the systematic
error from the chiral extrapolation (ml ! mud) to 
 3%, as
we show below. In contrast, previous calculations with
Wilson-type light quarks simulated at ml � ms=2 and
typically had O�10%� errors from this source alone [8].

For the valence charmed quark we use the clover action
with the Fermilab interpretation [9]. The bare mass is fixed
via theDs kinetic mass [3]. The free parameters of both the
action and the current are adjusted so that the leading
heavy-quark discretization effects are O��sa�QCD� and
O�a�QCD�

2�, where �QCD is a measure of the QCD scale.
The hadronic matrix element hPjV�jDi is extracted

from the three-point function in the D meson rest frame
(pD � 0)

CD!P3;� �tx; ty;p� �
X

x;y

eip�yhOP�0�V̂��y�OD�x�i; (2)

where p � pP, V̂� � � c"� x (x � d, s) is the heavy-
light vector current on the lattice, and OD and OP are
interpolating operators for the initial and final states. The
heavy-light bilinears V̂� and OD are formed from stag-
gered light quarks and Wilson heavy quarks as in Ref. [10].
The three-point functions are computed for light meson
momentum p up to 2��1; 1; 1�=L, using local sources and
sinks. The sink time is fixed typically to tx � 20. To
01160
increase the statistics, the calculations are carried out not
only at the source time t0 � 0 but also at t0 � 16, 32, 48,
(and tx and ty shifted accordingly). The results from four
source times are averaged. Statistical errors are estimated
by the jackknife method. To extract the transition ampli-
tude hPjV�jDi we also need meson two-point functions
CM2 �tx;p� �

P
xe
ip�xhOM�0�O

y
M�x�i, where M � D, �, K.

They are computed in an analogous way. For the light
meson (M � �, K) the two-point function couples to the
Goldstone channel of staggered quarks.

A drawback of staggered quarks is that each field pro-
duces four quark species, called ‘‘tastes’’ to stress that the
extra three are unphysical. There are three important con-
sequences that should be mentioned. First, the number of
tastes of sea quarks is reduced to two or one by taking the
square root or fourth root of the four-taste fermion deter-
minant. The validity of this procedure is not yet proven and
warrants further study.

Second, the light meson two-point function contains a
16-fold replication of the desired hadrons. The heavy-light
two-point function CD2 does not suffer from such replica-
tion, because contributions of heavy quarks with momen-
tum p�O��=a� are suppressed [10]. The same holds for
three-point functions that include at least one Wilson
quark, such as CD!P3;� . To check these properties, we carried
out a preparatory quenched calculation [4], finding reason-
able agreement with those obtained previously with Wilson
light quarks [8].

Finally, the three-point and two-point functions receive
contributions from states that oscillate in time, in addition
to the ground state and nonoscillating excited state contri-
butions. For example, the three-point function’s time de-
pendence takes the form

CD!P
3;� �tx; ty� � A0e

	EPtye	ED�tx	ty�

� �	1�tyA1e
	E0tye	ED�tx	ty� � � � � ; (3)

where A0 / hPjV�jDi.
As usual, the desired hadronic amplitude is extracted

from fitting the three-point and two-point functions. We
employ two methods. In the first method, we form the ratio
R�ty� � CD!P

3;� �tx; ty�=C
P
2 �ty�C

D
2 �tx 	 ty��, and fit to a con-

stant in ty. The oscillating state contributions are partly
canceled in the ratio, and further reduced by taking the
average, ~R�ty� � R�ty� � R�ty � 1��=2. A plateau is then
found for ty around tx=2. In the second method, we first fit
CD!P3;� and CP;D2 separately, using a multiexponential form
similar to Eq. (3), and then obtain hPjV�jDi from the fit
results. The results from the two methods always agree
within statistical errors. The difference between two results
is less than 3% for the lower two momenta, and as large as
3% for the higher two momenta. We choose the first
method for central values and take 3% as the systematic
error from the fitting.
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The lattice heavy-light vector current must be multiplied
by a renormalization factor ZcxV� . We follow the method in

Ref. [8], writing ZcxV� � (V��Z
cc
V Z

xx
V �

1=2. The flavor-

conserving renormalization factors ZccV and ZxxV are com-
puted nonperturbatively from standard charge normaliza-
tion conditions. The remaining factor (V� is expected to be
close to unity because most of the radiative corrections are
canceled in the ratio [11]. A one-loop calculation gives
[12] (V4 
 1:01 and (Vi 
 0:99 which we use in the
analysis below. This perturbative calculation is prelimi-
nary, but it has been subjected to several nontrivial tests.

Rather than calculating the conventional form factors f0
and f� directly, we first extract the form factors fk and f?,
as in Ref. [8], defined through

hPjV�jDi �
����������
2mD

p
v�fk�E� � p�?f?�E��; (4)

where v � pD=mD, p? � pP 	 Ev and E � v � pP is the
energy of the light meson. fk and f? are more natural
quantities in the heavy-quark effective theory, and chiral
expansions are given for them as a function of E [13,14].
We therefore carry out the chiral extrapolation in ml for fk
and f? at fixed E, and then convert to f0 and f�.

To perform the chiral extrapolation at fixed E, we inter-
polate and extrapolate the results for fk and f? to common
values of E. To this end, we fit fk and f? simultaneously
using the parametrization of Becirevic and Kaidalov (BK)
[15],

f��q2��
F

�1	 ~q2��1	�~q2�
; f0�q2��

F

1	 ~q2=+
; (5)

where ~q2 � q2=m2
D�
x
, and F � f��0�, � and + are fit

parameters, and f�, f0, and q2 are converted to fk, f?,
and E before the fits. An advantage of the BK form is that it
contains a pole in f��q2� at q2 � m2

D�
x
, where mD�

x
is the

lattice mass of the charmed vector meson with daughter
0 0.1 0.2 0.3 0.4 0.5
(aE)

2

0.5

1

1.5

2

aml=0.03 
aml=0.02
aml=0.01

a
−1/2

fperp

FIG. 1. a	1=2f? as a function of �aE�2 for the D! � decay.
Symbols are raw data and lines are fitting curves with the
parametrization of Eq. (5). Results at ml � 0:03, 0.02, and
0.01 are shown.
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quark x. The BK fit for f? is shown in Fig. 1, using data for
all available momenta p. Excluding the data for the highest
momentum 2��1; 1; 1�=L gives indistinguishable results.

We perform the chiral extrapolation using recently ob-
tained expressions [14] for heavy-to-light form factors in
staggered chiral perturbation theory (S,PT) [16]. As in
continuum ,PT [13], the formulae contain the chiral cou-
pling f and heavy-to-light meson coupling g. We take f �
130 MeV and g � 0:59, but changing these constants by
10% has negligible effect. The S,PT formulae contain six
additional parameters (4 splittings and two taste-violating
hairpins) to parameterize lattice discretization effects. The
new parameters are fixed from the analysis of light pseu-
doscalars [6]. The fit form we adopt (‘‘S,PT� linear’’) is

f?;k�E� � A1� .f?;k�E�� � Bml; (6)

where A;B are fit parameters, and .f?;k is the S,PT
correction. To estimate the systematic error here, we try
a simple linear fit and a ‘‘S,PT� quadratic’’ fit with a
term Cm2

l added to Eq. (6). A comparison of the three fits is
shown in Fig. 2. For the D! ��K� decay the linear fit
gives 3% (2%) larger results atml � mud. The results from
the S,PT� quadratic fit typically lie between the results
from the other two fits, with larger errors. We therefore
take 3% (2%) as the systematic error from the chiral
extrapolation for the D! ��K� decay.

We now convert the results for f? and fk at ml � mud,
to f� and f0. To extend f� and f0 to functions of q2, we
again fit to the form Eq. (5). The results are shown in Fig. 3,
with statistical errors only. We then obtain the decay rates
�=jVcxj2 by integrating �phasespace� � jf��q2�j2 over q2.
Finally, we determine the CKM matrix elements jVcdj and
jVcsj using experimental lifetimes and branching ratios [1].
These main results are summarized in Table I.

The results presented above rely on the q2 dependence
of BK parametrization, Eq. (5). To estimate the associated
systematic error, we make an alternative analysis without
it. We perform a two-dimensional fit in �ml; E� to the raw
data employing a polynomial form plus the S,PT correc-
tion .fk;?. The result from this fit agrees with the one from
0 0.01 0.02 0.03
aml

0.6
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FIG. 2. ml dependence and chiral fits for a	1=2fD!�? for sev-
eral values of �aE�2. The S,PT� linear fit (solid line), S,PT�
quadratic fit (dotted line) and linear fit (dashed line).
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TABLE I. Fit parameters in Eq. (5), decay rates, and CKM
matrix elements. The first errors are statistical; the second
systematic; the third experimental.

P F � + �=jVcxj
2ps	1� jVcxj

� 0.64(3) 0.44(4) 1.41(6) 0.154(12)(31) 0.239(10)(24)(20)
K 0.73(3) 0.50(4) 1.31(7) 0.093(07)(18) 0.969(39)(94)(24)
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FIG. 3. D! � and D! K form factors. The experimental
values are taken from Ref. [19].
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the fit with Eq. (6) within statistical errors. The deviation
between the two fits is negligible at q2 � q2max and about
10 at q2 � 0 for f?;k, giving a 2% difference for the CKM
matrix elements.

With only one lattice spacing, the systematic error from
discretization effects can be estimated only by power
counting. The leading discretization errors from the
Asqtad action are O�s�a�QCD�

2� 
 2% (after removal
of taste-violating effects with S,PT), taking �QCD �

400 MeV and �s � 0:25. In addition, there is a
momentum-dependent error from the final state. The BK
parameters are determined by the lower momentum data;,
in particular, the fits are insensitive to the highest momen-
tum 2��1; 1; 1�=L. Therefore we estimate this effect to be
O�s�ap�

2� 
 5%, taking the second-highest momentum
p � 2��1; 1; 0�=L. The heavy-quark effective theory
(HQET) of cutoff effects [17,18] can be used to estimate
the discretization error from the heavy charmed quark. In
this way, we estimate the discretization error to be 4–7%,
depending on the value chosen for �QCD (in the HQET
context). This is consistent with the lattice spacing depen-
dence seen in Ref. [8]. In future work we expect to reduce
and understand better this uncertainty, so we shall adopt the
maximum, 7%, here.

A summary of the systematic errors for the form factors
f�;0 or the CKM matrix elements jVcxj is as follows. The
error from time fits is 3%; from chiral fits, 3% (2%) for
D! ��K� decay; from BK parametrization, 2%. The 1-
loop correction to (V� is only 1%, so 2-loop uncertainty is
assumed to be negligible. The uncertainty for a	1 is about
1.2% [6]; this leads to a 1% error for jVcxj (but not for the
dimensionless form factors), from integrating over q2 to
get �=jVcxj2. Finally, we quote discretization uncertainties
of 2%, 5%, and 7%, from light quarks, the final state
energy, and the charmed quark, respectively. Adding all
01160
the systematic errors in quadrature, we find the total to be
3%� 3%�2%� � 2%� 1%� 2%� 5%� 7%� � 10%.

Incorporating the systematic uncertainties, we obtain

fD!�� �0� � 0:64�3��6�; (7)

fD!K� �0� � 0:73�3��7�; (8)

and the ratio fD!�
� �0�=fD!K� �0� � 0:87�3��9�. Our results

for the CKM matrix elements (Table I) are consistent with
Particle Data Group averages jVcdj � 0:224�12� and
jVcsj � 0:996�13� [1]; also with jVcsj � 0:9745�8� from
CKM unitarity. If we instead use these CKM values as
inputs, we obtain, for the total decay rates,

��D0!�	l���� �7:7�0:6�1:5�0:8��10	3 ps	1;

��D0!K	l���� �9:2�0:7�1:8�0:2��10	2 ps	1;

��D0!�	l���

��D0!K	l���
�0:084�0:007�0:017�0:009; (9)

where the first errors are statistical, the second systematic,
and the third from uncertainties in the CKM matrix ele-
ments. We do not assume any cancellation of errors in the
ratios, although some may be expected. Our results agree
with recent experimental results, fD!�� �0� � 0:73�15�,
fD!K� �0� � 0:78�5� [19], fD!�� �0�=fD!K� �0� � 0:86�9�,
and ��D0 ! �	e��e�=��D

0 ! K	e��e� � 0:082�
0:008 [20].

This Letter presents the first three-flavor lattice calcu-
lations for semileptonic D decays. With an improved stag-
gered light quark, we have successfully reduced the two
dominant uncertainties of previous works, i.e., the effect of
the quenched approximation and the error from chiral
extrapolation. Our results for the form factors, decay rates
and CKM matrix, given in Table I and Eq. (9) are in
agreement with experimental results. The total size of
systematic uncertainty is 10%, which is dominated by the
discretization errors. To reduce this error, calculations at
finer lattice spacings and with more highly improved
heavy-quark actions are necessary; these are underway.
Finally, unquenched calculations of B decays such as B!
�l� and B! Dl� are in progress, and will be presented in
a separate paper.
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