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Measurement of Hurst Exponents for Semiconductor Laser Phase Dynamics
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The phase dynamics of a semiconductor laser with optical feedback is studied by construction of the
Hilbert phase from its experimentally measured intensity time series. The Hurst exponent is evaluated for
the phase fluctuations and grows from 0.5 to ~0.7 (indicating fractional Brownian motion) as the feedback
strength is increased. A comparison with numerical computations based on a delay-differential equation
model shows excellent agreement and reveals the relative roles of spontaneous emission noise and
deterministic dynamics for different feedback strengths.
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The phase dynamics of nonlinear oscillators is relevant
for systems ranging from biomedical engineering, atoms
and molecules interacting with light, and charged particles
in traps. Quite often, it is possible to experimentally de-
termine the amplitude of dynamical variables, but the
measurement of phase variables is much more elusive.
Gabor’s [1] introduction of the Hilbert transform to define
an analytic signal from the amplitude of a dynamical
variable made it possible to derive an associated phase.
In recent years, such phase variables have been important
in the study of nonlinear oscillator dynamics and synchro-
nization [2,3]. When chaotic or noisy dynamics is dis-
played by such systems, the definition of a unique phase
variable is often difficult due to the presence of multiple
centers of rotation of the system trajectories.

In the context of the chaotic dynamics of the Lorentz
model, Yalcinkaya and Lai [4] used an empirical mode
decomposition (EMD) method [5] and the Hilbert trans-
form to provide a uniquely defined phase variable and
examine its dynamics. They showed that the Hurst expo-
nent for the phase dynamics of this model chaotic system
was about 0.74, representing persistent fractional
Brownian motion of the phase [6].

In this Letter we experimentally estimate the Hurst
exponent for measurements made on a semiconductor laser
with optical feedback. We compare these results with
computations on a delay-differential equation model of
the system that includes the effects of stochastic noise
and deterministic dynamics. A solitary semiconductor la-
ser displays fluctuations of intensity about a steady state
due to spontaneous emission noise that is inevitably
present. When a fraction of the light output is fed back
from an external reflector with a time delay, the system
may exhibit a variety of dynamical phenomena [7]. In
particular, when operated near threshold with moderate
feedback strengths, the laser intensity output displays ir-
regular power dropouts. If the laser is pumped further
above threshold while subject to similar feedback condi-
tions, the laser operates in the coherence collapse regime
and is dominated by large amplitude chaotic oscillations
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and the formation of many external cavity modes [8]. It is
in the latter regime that we perform the measurements
reported here.

In a previous study [9] we examined the formation of
external cavity modes in this laser system. We identified
mode formation through the observation of jumps of the
Hilbert phase as calculated using a constant reference
level, the average intensity of the laser. This procedure
does not follow phase changes that may occur when the
intensity displays nonstationary behavior, and is thus not
suitable for a study of the scaling behavior of the phase
dynamics, as measured by the Hurst exponent. We over-
come this difficulty by defining a unique phase variable for
the light intensity fluctuations through the combination of
the EMD and Hilbert transform techniques and calculate
the Hurst exponent for the system. Our results show that
such measurements provide clear evidence for a transition
from ordinary Brownian motion to persistent fractional
Brownian motion of the phase as the amount of optical
feedback coupled to the semiconductor laser is progres-
sively increased. These measurements quantitatively dis-
tinguish the relative influence of spontaneous emission
noise and deterministic dynamics due to reflective time-
delayed feedback.

In the experiment, a temperature controller is used to
stabilize (to better than 0.01 K) a Fabry-Perot semiconduc-
tor laser (Sharp LTO15MD). The light (A = 830 nm) from
the laser is reflected by a mirror placed at a distance of
45 cm from the anti-reflection-coated facet. A beam split-
ter directs light onto a photodetector (12 GHz bandwidth).
The output of the photodetector is recorded by a digital
oscilloscope with 100 ps resolution. The laser is pumped
with a bias current of 71.6 mA, which is 1.25 times of the
threshold current of 57.2 mA. The amount of feedback
coupled to the laser cavity is expressed through the effec-
tive external mirror reflectivity R = 1,72, which is char-
acterized by the coupling efficiency 7, and the fraction of
power T transmitted by a variable neutral density filter in
the external cavity [10].
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In Fig. 1(a), we show the real intensity time series 1" (¢)
recorded for a feedback strength of R = 6.7 X 1072, The
Hilbert phase can be calculated for this time series by
constructing the corresponding analytic signal I(¢) =
I0() + i19(z), where [0 =771p [* 1D(t) x
(Y — 1)~'dt is the Hilbert transform of I)(¢) and P is
the principal value of the integral. Writing I(¢) =
A(t)e'?1 | where A(f) is a real function, we obtain the
Hilbert phase ¢ (¢) of the real signal I)(¢). The instanta-
neous Hilbert frequency w(f) = d¢y(1)/dt can always be
calculated from the Hilbert phase. This frequency quanti-
fies the rate of rotation of I(¢) in the complex plane.
However, w(f) only bears physical significance as an os-
cillation when the analytic signal satisfies the conditions of
proper rotation; namely, there is a preferred direction of
rotation for I(¢) in the complex plane which can be defined
with respect to a unique center. Amplitude variables of
chaotic flows and noise-driven signals do not usually gen-
erate analytic signals with a proper structure of rotation
[4,11].

The recently introduced EMD method [5] adaptively
separates an arbitrary real time series into components,
each possessing a proper rotation structure, according to
the innate time scales of the dynamics. The EMD process is
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FIG. 1. (a) Intensity output of the semiconductor laser with
I=71.6 mA and R = 6.7 X 1072, (b)—(0) 14 intrinsic mode
functions for the time series of (a).

summarized as follows: (1) construct two smooth splines
connecting all the maxima and minima, respectively, to get
10).(1) and I[(I:i)n(t); (2) compute AIV(r) = I1V)(r) —
[0 (2) + 19 (1)]/2; (3) iterate (1) and (2) for AI®(7) until
the resulting signal corresponds to a proper rotation.
Denote the resulting signal by C,(#), which is the first
intrinsic mode; (4) take the difference Iﬁr)(t) = [(r) —
C,(r) and repeat (1) to (3) to obtain the second intrinsic
mode C,(1); (5) continue the procedure, known as sifting,
until the mode C,(#) shows no apparent variation.

By performing these steps, we have decomposed the
original signal 7")() into S, C(1), where C;(1) is the
Jjth intrinsic mode function (IMF) which is defined as a
function satisfying the following two conditions: (1) in the
whole data set, the number of extrema and the number of
zero crossings must either be equal or differ at most by one;
and (2) at any point, the mean value of the envelope defined
by the local maxima and the envelope defined by the local
minima is zero. For the time series shown in Fig. 1(a), the
EMD generates 14 IMFs, shown from Fig. 1(b) to Fig. 1(o).
The properties of the IMFs ensure a proper structure of
rotation for the corresponding analytic signals and allow a
physically significant analysis of the Hilbert phase
dynamics.

In Fig. 2(a), the 14 Hilbert phases ¢ y;(¢) and the corre-
sponding uniform phase increments calculated by {(w;())t
are plotted. The Hilbert phases (solid line) fluctuate about
the dashed line representing the uniform increment. This is
more clearly shown in Fig. 2(b), where 8¢y (¢) =
[@y1(D) — {w,(2))t] is portrayed for the intensity time se-
ries of Fig. 1(a) (thin line). We have focused on ¢y, ()
since this phase variable represents the fastest observed
time scales for the laser system. The 10 GHz sampling of
laser intensity enables us to observe scaling of the phase
fluctuations on the time scales involved in dynamical in-
teractions between external cavity modes. The phase fluc-
tuation of the first IMF is also shown for a time series
recorded for a weaker feedback strength of R =
7.2 X 107* (thick line).

To examine the nature of the phase fluctuations, we
calculate the Hurst exponent [6] of the time trace as
follows: (1) choose a window with width w and obtain
the absolute value of the phase difference |A¢y,(1)| =
|8y (t +w) — 8y (1)| by sliding the window from
the beginning to the end of the time trace; (2) calculate
{|A ¢ g (2)]), which is the time average of the phase differ-
ence time series; (3) change the window size w and obtain
the corresponding average value (|Ady(1)]); (4) plot
logo[{|Ad g (D)])] versus log,ow, if the plot distributes
on a straight line, then the slope of the fit line is the
Hurst exponent H of the time trace.

In Fig. 2(c), we plot log,o[{|A ¢y ()])] versus log;yw
for the phase fluctuations shown in Fig. 2(b). We find
a scaling regime over about two decades of window width
(from ~3 ns to ~150 ns). The Hilbert phase dynamics of
the semiconductor laser system with a feedback of
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R = 7.2 X 10™* displays regular Brownian motion with a
Hurst exponent H = 0.50. This is an indication that the
fluctuations of the phase are dominated by spontaneous
emission noise inherent to the laser. For a stronger feed-
back of R = 6.7 X 1072, we measure H = 0.71. In this
case, the dynamics portray a persistent fractional Brownian
motion (1 > H > 0.5) of the phase and fluctuations are
primarily influenced by the delayed feedback.

In order to obtain a clearer picture of how the phase
dynamics are influenced by the feedback strength, we
record 13 data sets with increasing feedback levels from
R = 0to R = 0.18, shown in Fig. 3. Our measurements in
this coherence collapse regime (R > 10~*) are character-
ized by rapid transitions between external cavity modes.

For the Hurst exponent analysis, we obtained eight
intensity time traces for every feedback strength in the
experiment. We could then calculate the average Hurst
exponent and the standard deviation of the eight samples
for each of the 13 feedback strengths [12]. The results are
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FIG. 2. (a) The Hilbert phases ¢g;(f) of the IMFs in Fig. 1
(solid line) and the corresponding uniform phase increment
{w;(t))t (dashed line), where i = 1...14, (b) the fluctuation of
¢ (1) about the uniform phase increment {w (1))t for (a) (thin
line) and for a time series (not shown) with feedback strength
R = 7.2 X 10™* (thick line), and (c) the Hilbert phase dynamics
is a persistent fractional Brownian motion with H = 0.71 for
R = 6.7 X 1072 and regular Brownian motion with H = 0.50
for R=7.2X 1074

displayed in Fig. 4 by the triangles. When the feedback
strength changes from R = O to R = 6.4 X 1073, the Hurst
exponent stays close to 0.5 and the phase dynamics re-
semble regular Brownian motion. Spontaneous emission
noise is the driving force of the intermode switching dy-
namics for this range of feedback. If the amount of feed-
back is increased past R = 6.4 X 1073, the Hurst exponent
exhibits a sharp increase towards 0.7 and levels off for
feedback strengths greater than R = 4.8 X 1072, In this
regime, the phase dynamics is influenced by feedback and
depends strongly on the history. Many external cavity
modes now participate in the laser dynamics [7,13], and
the Hurst exponent we compute now reflects an average of
the scaling behavior of the phase dynamics for individual
modes as well as contributions from deterministic global
intermode interactions.

The experiment may be numerically modeled by inte-
grating the Lang-Kobayashi equations [14] given below in
a slightly different form [9]

1 .
d_E =§(1 + iBC)GN,O\/T:nE(t) + KkE(t— 7)e 107 + F(r),

dt
ey
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FIG. 3. (a)-(m) Experimental intensity time series with in-

creasing feedback strength from R =0 to R = 0.18. The
pump current is set at 71.6 mA.
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FIG. 4. The Hurst exponent with error bars for experimental
measurements (triangles) and simulations (stars) for different
feedback strengths. R shows the transition from regular (H =
0.5) to fractional (H > 0.5) Brownian motion.

D py- -

dt T,
Here E(7) is the complex field; n(¢) = [N(f) — Ny,] is the
difference between the carrier number at arbitrary time and
the threshold carrier number Ny, = 3.9 X 108; 8. =5 is
the linewidth enhancement factor; Gy, = 21400 s~ and
ro = 0.32 are the respective differential gain and facet
power reflectivity for a laser with an uncoated facet; r =
0.1 is the facet power reflectivity of a laser with an antire-
flection coating; 7 = 3.0 ns is the external cavity round-
trip time; w, is the solitary laser frequency; Fg(t) is the
Langevin noise term, with (Fg()Fg(t')") = Ry,6(t — 1),
where Ry, = 10'* 57! is the spontaneous emission rate;
7, = 1.1 ns is the carrier recombination time and I' =
1.1 ps7! is the photon decay rate; k= (1 —r)X
(R/P'? /7, is the feedback rate, where 7;, = 3.9 ps is
the solitary laser pulse round trip time, and R the effective
external mirror reflectivity used to quantify feedback levels
in the experiment [9]. P; = 1.25 is the ratio of pump and
threshold currents. The equations are integrated with a time
step of 0.5 ps for 41 wus (we neglect the first 1 us for
transients), low pass filtered and smoothed over intervals
of 0.1 ns to simulate the digital oscilloscope electronics.

In Fig. 4 we also report the Hurst exponent versus the
reflectivity from the simulations (stars), calculated for
different R values matching the experiment and some
additional cases. The computational results support the
experimental conclusion that the dynamics of the Hilbert
phase display ordinary Brownian motion for feedback
strengths up to R = 6.4 X 1073, Further increases in feed-
back show a transition to fractional Brownian motion and
saturation of the Hurst exponent to H ~ 0.7, displaying a
close match with experimental measurements.

We have experimentally confirmed for a real physical
system the prediction by Yalginkaya and Lai of persistent

1
F|E|2—n<—+GN,o @lEP). @)
T r

r

Brownian motion for the most rapidly varying phase asso-
ciated with a model chaotic system. In addition, we dem-
onstrate that it is possible to distinguish between the
influence of spontaneous emission noise and deterministic
feedback on the dynamics of a semiconductor laser with
optical feedback. The laser makes a transition from regular
Brownian motion to persistent Brownian motion as the
external mirror reflectivity is increased. The occurrence
of this transition is quantified by measurements of the
Hurst exponent for the phase dynamics computed from
experimental and numerical time series for the laser
intensity.
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