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Enhanced Quantum State Detection Efficiency through Quantum Information Processing
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We investigate theoretically and experimentally how quantum state-detection efficiency is improved by
the use of quantum information processing (QIP). Experimentally, we encode the state of one 9Be� ion
qubit with one additional ancilla qubit. By measuring both qubits, we reduce the state-detection error in
the presence of noise. The deviation from the theoretically allowed reduction is due to infidelities of the
QIP operations. Applying this general scheme to more ancilla qubits suggests that error in the individual
qubit measurements need not be a limit to scalable quantum computation.
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A central feature of quantum information processing
(QIP) is the use of conditional quantum logic to enhance
the efficiency of performing certain algorithms or tasks [1].
One such task is the efficient quantum state measurement
itself, which is one of the defining goals of metrology and
an important component of QIP [2].

In the context of quantum computation, when the coher-
ent operations used in an algorithm can be performed with
higher efficiency than the state detection, or readout, the
overall efficiency is restricted by the latter. This affects the
abilities of quantum computation in three ways. First, it
may require excessive repetition of an algorithm in order
to reliably determine its output. Second, it can render a
system unscalable because the required maximum toler-
able error rate is not achieved for all operations including
detection. Finally, even if scalability is in reach, the failure
of measurements needed for error correction during the
computation requires additional overhead to avoid mis-
correcting errors. Fortunately, simple elements of QIP
can be used to enhance state-detection efficiency.

Assume we are given a qubit, a two-state quantum
system, where the wave function � in a chosen measure-
ment basis is specified by a superposition of two states j0i
and j1i, j�i � �0j0i � �1j1i. When a measurement op-
eration is invoked, the qubit is projected into the eigenstate
j0i (j1i), with probability j�0j

2 (j�1j
2), where j�0j

2 �
j�1j

2 � 1. For a series of measurements on identically pre-
pared qubits in superposition states (�0 � 0; 1), the mea-
surement outcomes fluctuate due to projection noise [3], a
fundamental noise limit. However, due to the presence of
additional technical noise in a real experiment, we some-
times determine that the qubit was in state j0i when it was
actually in state j1i, and vice versa. This can occur even if
the qubit is in an eigenstate (�0 � 0 or 1) before the
measurement operation and projection noise is absent.
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For a quantum algorithm such as Shor’s factoring algo-
rithm [4], the state of the system before the final measure-
ment is a large superposition state of N qubits of the form
�0j000 � � � 0i � �1j000 � � � 1i � � � � � �2N�1j111 � � � 1i,
where most �k are 0, but there are still exponentially many
nonzero �k with similar magnitudes. When the measure-
ment projection occurs, the information from the number k
(not j�kj2) is then used in a classical algorithm to find a
factor of the input number. Let the readout fidelity F be the
probability of correctly measuring the state j0i or j1i for an
individual qubit and assume equal probability of misiden-
tifying these states. The fidelity of correctly obtaining all
the bits of k in the readout process is given by FN . For
small F, the overall readout fidelity becomes exponentially
small with N, or, conversely, we appear to require an
exponentially large number of measurements and repeti-
tions of the algorithm to determine a useful output k. The
problem is avoided if F ! 1.

To improve state detection, a seemingly obvious strategy
would be to run the algorithm many times to gain statistical
precision. This is an undesirable solution for algorithms
involving many coherent operations followed by a single
measurement. Also if the algorithm requires a significant
amount of error correction, detection errors compound and
repetition may actually fail to give the desired result.
Avoiding the repetition of the algorithm by copying the
final state and measuring the copies is precluded by the
impossibility of cloning superposition states [5]. However,
a way to enhance state-detection fidelity by using quantum
logic gates in conjunction with auxiliary ‘‘ancilla’’ qubits
is outlined in Ref. [2]. For simplicity, consider a qubit in
the superposition state j i � �0j0i � �1j1i. A sequence
of M controlled-not gates [1] involving ancillae
a1; a2 � � � aM reserved for this qubit encodes j i to an
entangled state according to the transformation
��0j0i � �1j1i	j0ia1j0ia2 � � � j0iaM ! �0j0ij0ia1j0ia2 � � � j0iaM � �1j1ij1ia1j1ia2 � � � j1iaM: (1)

Then, by measuring the input and the ancilla qubits we can reduce the measurement uncertainty in the detection process
[2]. Effectively, we get M� 1 tries to determine which state each qubit is projected into and can use a majority vote to
determine the correct readout [6].
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The above protocol is applicable to any quantum system.
For QIP, any of the possible physical implementations
being considered [7] would benefit; here, we describe
how it might be implemented with atomic qubits. To ex-
plain our particular implementation, first consider an ideal-
ized experiment, where we assume that all operations other
than detection are error-free. We distinguish the two states
of each atom, from now on labeled j#i and j"i, by observing
state-dependent laser driven fluorescence of the atom. We
assume that if the atom is in the j"i state, laser-beam
scattering is absent and that for the j#i state, the atom can
scatter many photons. Even if we detect only a small
fraction of the scattered photons, we can distinguish the
two states [8]. However, here, we also assume that detected
photons from background light can cause us to misidentify
the j#i state when the atom is actually in the j"i state. We
further assume that the duration available for detection is
limited by other experimental considerations (such as op-
tical pumping of the j"i to the j#i state, which can lead to
systematic errors). This situation is depicted in Fig. 1.

For one qubit, to distinguish the two states, j#i and j"i,
using the number of detected photons ndet, one must define
a threshold n1 (which depends on the duration of the de-
tection). If ndet > n1, the state is read out as j#i; if ndet �
n1, the state is read out as j "i. If the detected counts oc-
FIG. 1. Simulated Poissonian distributions D of photon counts
for the detection of fluorescence in the case of (left to right) zero,
one, or two qubits in the j #i state (the state that scatters photons).
Background noise counts are responsible for the finite photon
counts in D". For the plot shown, the rate of background noise
counts h _nbkgi � 0:125h _n#i, where h _n#i �

1
2 h _n##i � 2:5 � 104 s�1

is the count rate for the j#i state and where the detection duration
is taken to be 324 �s (the parameters are chosen to correspond
to the actual experiment). The state determination is ambiguous
for detected counts ndet in the region where the D" and the D#

distributions overlap (see magnified inset), leading to errors. In
the case of one- qubit, a threshold n1 must be determined to
distinguish the two states. For two qubits being either in the j#ij#i
state with distribution D## or in the j"ij"i state with distribution
D"", the corresponding threshold n2 always provides a smaller
overlap of the distributions, thus a smaller readout error.
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cur in the regions where the distributions D" for j"i and D#

for j#i overlap, the state assignment is ambiguous. Assum-
ing no a priori knowledge of measurement outcomes, the
optimum value of n1 is determined by minimizing si-
multaneously the fractions of D" with ndet > n1 and D#

with ndet � n1. The average error is determined by the
normalized sum of the experiments in the D" histogram
for ndet > n1 and the D# histogram for ndet � n1.
Importantly, the overlap, and therefore the average
error, is much smaller for two qubits in the same state
j#ij#i with distribution D## or j"ij"i with distribution
D"" (� D") and the decision threshold n2 being determined
in the same manner as that for n1. We can therefore
increase our detection efficiency if we first carry out the
encoding ��#j#i � �"j"i	j#ia ! �#j#ij#ia � �"j"ij"ia and
measure the fluorescence from both qubits [9]. As indi-
cated in Fig. 2, the histogram overlaps and corresponding
detection errors decrease as the detection duration
increases.

In our experimental realization, the qubits’ logical states
are given by the two hyperfine states of 9Be� atomic ions
j#i  jF � 2; mF � �2i and j"i  jF � 1; mF � �1i of
the 2S1=2 electronic ground state, separated by the hyper-
fine splitting !0 ’ 2�� 1:25 GHz [10]. The ions are con-
fined to the axis of a linear radio-frequency trap [11].
Single-qubit rotations (single bit gates) are accomplished
by driving two-photon stimulated Raman transitions with
the use of two laser beams (� � 313 nm), whose wave
FIG. 2. Theoretical error in state identification as a function of
the detection duration at a given average count rate h _n#i � 2:5 �

104 s�1, for two levels of background noise. The one-qubit cases
(without encoding) are represented by the dotted lines, and the
one-ancilla encoded case by the solid lines. The shaded areas
emphasize the reduction of the error by the encoded detection
scheme. We assume a background count rate of h _nbkgi �

0:125h _n#i in the lower pair of curves (a) and of h _nbkgi �

1:5h _n#i in the upper pair of curves (b). Since the photon number
thresholds (see Fig. 1) are integers, the curves can show steps
where n1 and n2 change.
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vector difference � ~k � ~k2 � ~k1 is aligned along the trap
axis (j�kj �

���
2

p
� 2�=� � 2�=�eff) and whose fre-

quency difference !2 �!1 is equal to !0. Such a rotation
on a state vector can be represented by
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This single-qubit gate can be visualized on the Bloch
sphere [12]. The angle � is proportional to the duration
of the Raman beam pulse, and � is a phase factor that
depends on the phase difference of the Raman beams at the
position of the ion, defining the axis about which the Bloch
vector rotates. In our experiment, the conditional logic is
implemented with a two-qubit geometrical-phase gate
[13]. For the logical states of two qubits, the gate imple-
ments the following transformation:

j#ij#i ! j#ij#i; j"ij "i ! j"ij"i;

j#ij"i ! ei��=2	j#ij"i; j"ij #i ! ei��=2	j"ij#i:
(3)

We denote this gate by G. For experimental convenience,
we initialize the ancilla in a superposition state by a
technique described below, so that the initial state of the
two qubits is

�initial � ��#j#i � �"j"i	�j#ia � j"ia	; (4)

where not all states are normalized to simplify the expres-
sion. We now implement the operation

�initial ! Ra

�
�
2
; �
�
G�initial � �#j#ij#ia � �"j"ij"ia; (5)

where the Ra denotes a rotation that applies only to the
ancilla. The experiment consists of applying the trans-
formation in Eq. (5) followed by measurement of the
state-dependent photon scattering from both qubits. We
examine three input cases: (i) �# � 1, (ii) �" � 1, and
(iii) �# � �" �

1��
2

p .

At the start of each experiment, the motion of the qubits
along the trap axis is cooled to the ground state, and the
ions are initialized in the j#ij#ia state via optical pumping
[14]. State preparation [Eq. (4)] and the encoding [Eq. (5)]
require individual addressing of the qubits. This can be
accomplished with laser-beam focusing on sufficiently
separated ions [15] but can also be realized with tightly
confined ions [16] and laser beams having spot sizes much
larger than the spacing of the ions [17–19]. In this tech-
nique, rotations are broken into two segments in which �
on one of the ions is switched by � between the segments
by appropriately shifting the position of that ion in the laser
beams.
01050
For case (i) the phase gate transforms the state jS1i �

j#i�j#ia � j"ia	 � j#ij#ia � j#ij"ia ! j#ij#ia � ei��=2	j#ij"ia �
j#i�j#ia � ei��=2	j"ia	 and, analogously for case (ii), jS2i !

j"i�ei��=2	j#ia � j"ia	. While the primary qubit remains un-
changed, the ancilla is in a superposition state with a phase
dependent on the primary qubit’s initial state. This phase
information is converted into opposite ancilla states in the
measurement basis by a second individual addressing ro-
tation [17–19]. This last operation is identical for all three
cases and composed of a R��4 ; �	 � Ra�

�
4 ; �	 pulse fol-

lowed by a R��4 ; 0	 � Ra�
�
4 ; �	 pulse. For all three cases,

and in general for arbitrary �#;", this procedure implements
the operation in Eq. (5). After these pulse sequences, state-
sensitive detection is realized with an additional laser
beam, tuned to a cycling transition [10]. The number of
detected photons ndet is measured in a time-resolved way;
that is, the counts are binned into time intervals of 10 �s
(8:1 �s detection duration plus 1:9 �s dead time), provid-
ing a maximal detection duration of 324 �s (400 �s in-
cluding the dead time). Data from 104 such experiments
are used here. For our experimental optical collection and
detection efficiency, a single ion in the state j#i provides a
count rate h _n#i �

1
2 h _n##i � 2:5 � 104 s�1. In the experi-

ment, we have h _nbkgi � h _n#i and the detection efficiency
is quite high. Therefore, to investigate the fundamental
features of the enhancement scheme, we add Poissonian
count noise to the detected ion fluorescence [20]. For the
data presented here, we include two background noise
levels with mean count rates h _nbkgi � 0:125h _n#i and
1:50h _n#i. To compare the two-qubit detection results with
those of the one-qubit case, we perform a separate experi-
ment with only one qubit and determine the average de-
tection error as described in Fig. 1. The results of cases (i)
and (ii) combined are shown in Fig. 3.

Even though the qualitative behavior of the protocol is
verified, the experimental performance is degraded as seen
by comparing Figs. 2 and 3. In Fig. 2, perfect gate opera-
tions were assumed. In the experiment, the fidelity for each
two-qubit individual addressing gate (applied twice) is
about 0.95 whereas rotations applied to a single ion have
a fidelity greater than 0.99. The conditional phase gate has
a fidelity of about 0.97 and j"i ! j#i optical pumping
causes an error smaller than 1% for our detection dura-
tions. These errors have both correlated and uncorrelated
components. The net effect is that, for example, when
encoding the j"i input state, ideally we expect probabilities
P"" � 1 and P#" � P"# � P## � 0, whereas the experiment
gave P#" � P"# ’ 0:085 and P## ’ 0:02. Similar imperfec-
tions were obtained for encoding the j#i state. Simulations
of the experiments with these distributions agree with the
data (solid lines in Fig. 3) to within 1%. The higher the
noise level, the more advantageous the encoding scheme,
as is indicated for the case where h _nbkgi � 1:5h _n#i.

Case (iii) tests the universality of the encoding scheme
for superposition states, as described by Eq. (1). The
observed count histograms were an equal mixture of histo-
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FIG. 3. Experimental error in state identification as a function
of the duration of the detection at a given average count rate
h _n#i � 2:5 � 104 s�1. As for the simulated results shown in
Fig. 2, we examine two cases, with (a) h _nbkgi � 0:125h _n#i and
(b) h _nbkgi � 1:5h _n#i. The differences between Figs. 2 and 3,
notably the leveling off of the error probability for long detection
times in the encoding cases, are primarily due to the infidelity in
the experimental gates required for state preparation and imple-
menting the enhancement protocol (see the text).
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grams for the j#i and j"i cases, so we used the photon
thresholds n2 determined from the results of cases (i) and
(ii). With the encoding protocol, the derived coefficients of
the initial superposition state are in agreement with the
ideally expected ones, but in this case, noise is dominated
by projection noise.

The fidelities achieved in the current experiment are not
high enough for scalable QIP; however, if they can be made
sufficiently high, a method like the one described here is
advantageous, with significant improvements in efficiency
as more ancilla qubits are used. For example, if a majority
vote is used for the state of Eq. (1) (assuming an even
number M of ancilla qubits) and we have a readout fidelity
F, the probability to get m correct answers is Pm �
Fm�1 � F	M�1�m�M� 1	!=�m!�M� 1 �m	!� (the bino-
mial distribution). The probability of a correct majority
vote is then P �

PM�1
m�M=2�1 Pm. For example with F � 0:7

one needs 30 ancilla qubits to get P> 0:99; with F � 0:9
only four ancilla qubits are required.

A slight modification of the protocol presented here is to
simply discard experiments when the number of detected
counts is in the ambiguous region where the distributions
overlap. The use of ancilla qubits shrinks the region of
overlap and therefore reduces the number of experiments
to be discarded. This strategy may be useful in encoded-
qubit error correction or to purify special states such as
Bell states [21]. Another detection strategy would be to
map the state of the initial qubit onto another qubit that is
more easily detected [22].
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