
PRL 93, 268701 (2004) P H Y S I C A L R E V I E W L E T T E R S week ending
31 DECEMBER 2004
Patterns of Link Reciprocity in Directed Networks
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We address the problem of link reciprocity, the nonrandom presence of two mutual links between pairs
of vertices. We propose a new measure of reciprocity that allows the ordering of networks according to
their actual degree of correlation between mutual links. We find that real networks are always either
correlated or anticorrelated, and that networks of the same type (economic, social, cellular, financial,
ecological, etc.) display similar values of the reciprocity. The observed patterns are not reproduced by
current models. This leads us to introduce a more general framework where mutual links occur with a
conditional connection probability. In some of the studied networks we discuss the form of the conditional
connection probability and the size dependence of the reciprocity.
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The recent discovery of a complex network structure in
many different physical, biological, and socioeconomic
systems has triggered an increasing effort in understanding
the basic mechanisms determining the observed topologi-
cal organization of networks [1,2]. Nontrivial properties
such as a scale-free character, clustering, and correlations
between vertex degrees are now widely documented in real
networks, motivating an intense theoretical activity con-
cerned with network modeling [1–3].

In this Letter we focus on a peculiar type of correlation
present in directed networks: link reciprocity, or the ten-
dency of vertex pairs to form mutual connections between
each other [4]. In other words, we are interested in deter-
mining whether double links (with opposite directions)
occur between vertex pairs more or less often than ex-
pected by chance. This problem is fundamental for several
reasons. First, if the network supports some propagation
process [such as the spreading of viruses in email networks
[5,6] or the iterative exploration of Web pages in the World
Wide Web (WWW) [7] ], then the presence of mutual links
will clearly speed up the process and increase the possi-
bility of reaching target vertices from an initial one. By
contrast, if the network mediates the exchange of some
good, such as wealth in the World Trade Web [8–10] or
nutrients in food webs [11,12], then any two mutual links
will tend to balance the flow determined by the presence of
each other. The reciprocity also tells us how much infor-
mation is lost when a directed network is regarded as
undirected (as often done, for instance, when measuring
the clustering coefficient [1,5,6,8,9]). Finally, detecting
nontrivial patterns of reciprocity is interesting by itself,
since it can reveal possible mechanisms of social, biologi-
cal, or different natures that systematically act as organiz-
ing principles shaping the observed network topology.

In general, directed networks range between the two
extremes of a purely bidirectional one (such as the
Internet, where information always travels both ways along
computer cables) and of a purely unidirectional one (such
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as citation networks [1], where recent papers can cite less
recent ones while the opposite cannot occur). A traditional
way of quantifying where a real network lies between such
extremes is measuring its reciprocity r as the ratio of the
number of links pointing in both directions L$ to the total
number of links L [4,5,8]:

r �
L$

L
: (1)

Clearly, r � 1 for a purely bidirectional network while
r � 0 for a purely unidirectional one. In general, the value
of r represents the average probability that a link is recip-
rocated. Social networks [4], email networks [5], the
WWW [5], and the World Trade Web [8] were recently
found to display an intermediate value of r.

However, the above definition of reciprocity poses vari-
ous conceptual problems that we highlight before proceed-
ing with a systematic analysis of real networks. First, the
measured value of r must be compared with the value rrand

expected in a random graph with the same number of
vertices and links in order to assess whether mutual links
occur more or less (or just as) often than expected by
chance [5]. This means that r has only a relative meaning
and does not carry complete information by itself. Second,
and consequently, the definition (1) does not allow a clear
ordering of different networks with respect to their actual
degree of reciprocity. To see this, note that rrand is larger in
a network with larger link density (since mutual connec-
tions occur by chance more often in a network with more
links), and as a consequence it is impossible to compare the
values of r for networks with different density, since they
have distinct reference values. Finally, note that, even in
two networks with the same density, the definition (1) can
give inconsistent results if L includes the number of self-
loops (links starting and ending at the same vertex). Since
the latter can never occur in mutual pairs, while their
number can vary significantly across different networks,
a finer measure of reciprocity should exclude them from
1-1  2004 The American Physical Society



PRL 93, 268701 (2004) P H Y S I C A L R E V I E W L E T T E R S week ending
31 DECEMBER 2004
the potential set of mutual connections (hence L should be
defined as the number of links minus that of self-loops).

In order to avoid the aforementioned problems, we
propose a new definition of reciprocity (denoted as � to
avoid confusion with r) as the correlation coefficient be-
tween the entries of the adjacency matrix of a directed
graph (aij � 1 if a link from i to j is there, and aij � 0 if
not):

� �

P
i�j
�aij � �a��aji � �a�

P
i�j
�aij � �a�2

; (2)

where the average value �a �
P

i�jaij=N�N � 1� �
L=N�N � 1� measures the ratio of observed to possible
directed links (link density), and self-loops are now and in
the following excluded from L, since i � j in the sums
appearing in Eq. (2). Note that with such a choice rrand �
�a, since in an uncorrelated network the average probability
of finding a reciprocal link between two connected vertices
is simply equal to the average probability of finding a link
between any two vertices, which is given by �a.

Although the above definition appears much more com-
plicated than Eq. (1), it reduces to a very simple expres-
sion. Indeed, since

P
i�jaijaji � L$ and

P
i�ja

2
ij �P

i�jaij � L, Eq. (2) simply gives

� �
L$=L� �a

1� �a
�

r� �a
1� �a

: (3)

The correlation coefficient � is free from the conceptual
problems mentioned above, since it is an absolute quantity
which directly allows one to distinguish between recipro-
cal (� > 0) and antireciprocal (� < 0) networks, with
mutual links occurring more and less often than random,
respectively. In this respect, � is similar to the assortativity
coefficient [3] which allows one to distinguish between
assortative or disassortative networks. The neutral or are-
ciprocal case corresponds to � � 0. Note that if all links
occur in reciprocal pairs one has � � 1 as expected.
However, if L$ � 0 one has � � �min where

�min � �
�a

1� �a
; (4)

which is always from � � �1 unless �a � 1=2. This occurs
because in order to have perfect anticorrelation (aij � 1
whenever aji � 0) there must be the same number of zero
and nonzero elements of aij or, in other words, half the
maximum possible number of links in the network. This is
another remarkable advantage of using �, since it incorpo-
rates the idea that complete antireciprocity (L$ � 0) is
more statistically significant in networks with larger den-
sity, while it has to be regarded as a less pronounced effect
in sparser networks. Also note that the expression for �min

makes sense only if �a � 1=2, since with higher link density
it is impossible to have L$ � 0 and the minimum reci-
procity is no longer given by Eq. (4) (values of �a larger
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than 1=2 are observed for the most recent data of the World
Trade Web shown below). Finally, note that the definition
(2) allows a direct generalization to weighted networks or
graphs with multiple edges by substituting aij with any
matrix wij.

As in Ref. [3], we can evaluate the standard deviation ��

for � in terms of the values �ij obtained when any (single
or not) link between vertices i and j is removed:

�2
� �

X

i<j

��� �ij�
2

� L$��� �$�2 � �L� L$���� �!�2; (5)

where �$ � �L$�2�=�L�2���L�2�=N�N�1�
1��L�2�=N�N�1� is the value of �

when a pair of mutual links is removed and �! �
L$=�L�1���L�1�=N�N�1�

1��L�1�=N�N�1� is the value of � when the link be-
tween two singly connected vertices is removed.

We can now proceed with the analysis of the reciprocity
in a coherent fashion. Table I shows the values of �
computed on 133 real networks. The most striking result
is that, when ordered by decreasing values of � as shown in
the table, all networks result in clearly arranged groups of
the same kind. The most correlated system is the interna-
tional import-export network or World Trade Web (WTW),
displaying 0:68 � � � 0:95 for each of its 53 annual snap-
shots [10] in the time interval 1948–2000 (more details on
this system are given below). The WTW is followed by a
portion of the WWW [7] and by two versions of the neural
network of the nematode C. elegans [13,14] (one where the
vertices are different neuron classes and one where they are
single neurons). For the two neural networks, we find that
the reciprocity is preserved (�neurons � 0:17
 0:02 and
�classes � 0:18
 0:04) even after removing the links cor-
responding to gap junctions (which, different from the
chemical synapses, are intrinsically bidirectional
[13,14]). We then have two different email networks (one
built from the address books of users [5] and one from the
actual exchange of messages [6] in two different univer-
sities). The small difference in their values of � suggests
the presence of a similar underlying social structure be-
tween pairs of users, either appearing in each other’s
address book or mutually exchanging actual messages. A
similar consideration applies to the two word association
networks [15] (one based on the relations between the
terms of the Online Dictionary of Library and
Information Science and one on the empirical free associ-
ations between words collected in the Edinburgh
Associative Thesaurus), since completely free associations
between words seem to reproduce most of the mutuality
present in a network with logically or semantically linked
terms, an interesting effect probably related to some intrin-
sic psychological factor. The weakly correlated range
0:006 � � � 0:052 is covered by the 43 cellular networks
of Ref. [16], where reciprocity is related to the potential
reversibility of biochemical reactions. Finally, we find that
the antireciprocal region � < 0 hosts the shareholding net-
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TABLE I. Values of � (in decreasing order), ��, and �min for
several networks. For three large groups of networks, only the
most and the least correlated ones are shown.

Network � �� �min

Perfectly reciprocal 1 � � � � �a
1� �a

World Trade Web (53 webs) [10]
Most correlated (year 2000) 0.952 0.002 � �a > 0:5�
Least correlated (year 1948) 0.68 0.01 �0:80
World Wide Web [7] 0.5165 0.0006 �0:0001
Neural networks [13,14]
Neuron classes 0.44 0.03 �0:04
Neurons 0.41 0.02 �0:03
Email networks [5,6]
Address books 0.231 0.003 �0:001
Actual messages 0.194 0.002 �0:001
Word networks [15]
Dictionary terms 0.194 0.005 �0:002
Free associations 0.123 0.001 �0:001
Cellular networks (43 webs) [16]
Most correlated (H. influenzae) 0.052 0.006 �0:001
Least correlated (A. thaliana) 0.006 0.004 �0:003

Areciprocal 0 � � � � �a
1� �a

Shareholding networks [17]
NYSE �0:0012 0.0001 �0:0012
NASDAQ �0:0034 0.0002 �0:0034
Food webs [11,12]
Silwood Park �0:0159 0.0008 �0:0159
Grassland �0:018 0.002 �0:018
Ythan Estuary �0:031 0.005 �0:034
Little Rock Lake �0:044 0.007 �0:080
Adirondack lakes (22 webs)
Most correlated (B. Hope) �0:06 0.02 �0:10
Least correlated (L. Rainbow) �0:102 0.007 �0:102
St. Marks Seagrass �0:105 0.008 �0:105
St. Martin Island �0:13 0.01 �0:13

Perfectly antireciprocal �1 � � � �1
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works corresponding to two U.S. financial markets [17]
and 28 different food webs: the 22 largest ones of Ref. [11]
and the six studied in Ref. [12]. We note that often � �
�min for both classes of networks, highlighting the ten-
dency of companies to avoid mutual financial ownerships
and the scarce presence of mutualistic interactions (sym-
biosis) in ecological webs.

This clear ordering of network classes according to their
reciprocity suggests that in each class there is an inherent
mechanism yielding systematically similar values of the
reciprocity or, in other words, that the reciprocity structure
is a peculiar aspect of the topology of various directed
networks. In all cases we find that real networks are either
reciprocal or antireciprocal (�real � 0), in striking contrast
with current models that generally yield areciprocal net-
works (�model � 0). To see this, note that � aggregates the
information about a deeper mechanism existing between
each pair of vertices. Let pij � p�i! j� denote the proba-
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bility that a link is drawn from vertex i to vertex j. In the
general case, the probability pi$j of having a pair of
mutual links between i and j is given by

pi$j � p�i! j \ i j� � rijpji � rjipij; (6)

where rij is the conditional probability of having a link
from i to j given that the mutual link from j to i is there:

rij � p�i! jjj! i�: (7)

Note that hriji �
P

i�jrij=N�N � 1� � r, motivating the
choice of the symbol. The expected value of � reads

� �

P
i�j

pijrji � �
P
i�j

pij�
2=N�N � 1�

P
i�j

pij � �
P
i�j

pij�
2=N�N � 1�

: (8)

Now, in most models the presence of the mutual link does
not affect the connection probability, or, in other words,
rij � pij and pi$j � pijpji. This yields � � 0 in Eq. (8),
meaning that model networks are areciprocal. The only
way to integrate reciprocity in the models is considering
a nontrivial form (rij � pij) of the conditional probabil-
ity (hence the information required to generate the net-
work is no longer specified by pij alone). This allows one
to introduce, beyond pi$j, the probability pi!j � pij �

rijpji of having a single link from i to j (and no reciprocal
link from j to i), and the probability pi 6$j (fixed by the
equality pi!j � pi j � pi$j � pi 6$j � 1) of having no
link between i and j. The network can then be generated
by drawing, for each single vertex pair, a link from i to j, a
link from j to i, two mutual links, or no link with proba-
bilities pi!j, pi j, pi$j, and pi 6$j, respectively.

The form of rij can be in principle very complicated;
however, in some of the studied networks we find that it is
constant. In particular, we observe that in each snapshot of
the World Trade Web the in-degree kini �

P
jpji and the

out-degree kouti �
P

ipij of a vertex are approximately
equal, meaning that pij � pji and hence rij � rji. Then
we find (see Fig. 1) that for these networks the reciprocal
degree k$i �

P
jpijrji (number of mutual link pairs of a

vertex) is proportional to the total degree kTi �
P

jpij �

pji � 2
P

jpij, or k$i � ckTi . This means rij � r � 2c,
which is confirmed by the excellent agreement between
the fitted values of c and the values r=2 � L$=2L obtained
independently (see the legend in Fig. 1). A similar trend,
even if with larger fluctuations, is displayed by the neural
networks and the message-based email network (not
shown). The other networks instead do not display any
clear behavior, meaning that rij has in general a more
complicated form.

Another important problem is the size dependence ��N�.
As evident from Eq. (3), this depends on both r�N� and
�a�N�, which display different trends on different classes of
networks and therefore should be considered separately for
each class. We found three instructive cases, as reported in
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FIG. 2 (color online). Plots of ��N�, r�N�, and �a�N� on (a) the
43 cellular networks of Ref. [16], (b) the 28 food webs of
Refs. [11,12], and (c) the 53 annual snapshots (1948–2000) of
the WTW [10].

FIG. 1 (color online). Plots (separated for clarity) of the re-
ciprocal degree k$ versus the total degree kT for six snapshots of
the World Trade Web, with linear fit y � cx (error on c: 
0:01).
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Fig. 2. For cellular networks �a�N� / N�1, implying �! r
as N increases; therefore, the asymptotic behavior of �
depends only on that of r, which is found to increase as N
increases. By contrast, r � 0 for food webs, so that in this
case ��N� depends only on �a�N�, whose form is, however,
unclear, probably due to the small size of the webs [11],
and therefore no clear trend is observed for ��N� as well.
The behavior of the WTW is more complicated because
both r and �a contribute relevantly to �, and because its N
dependence reflects its temporal evolution (N increases
monotonically during the considered time interval).
Between 1948 and 1990, N increases from 76 to 165
mainly since various colonies become independent states,
but �a and r (and hence �) fluctuate about a roughly
constant value. Then, after a sudden increase (N > 180)
in 1991 due to the formation of new states from the
USSR, N grows very slowly while �a, r, and � increase
rapidly, an interesting signature of the faster globalization
process of the economy and the tighter interdependence of
world countries. Indeed, the steep increase �! 1 signals
that the world economy is rapidly evolving towards an
‘‘ordered phase’’ where all trade relationships are
bidirectional.

More generally, this could suggest the promotion of � as
an order parameter whose continuous variation from � <
1 to � � 1 corresponds to a discontinuous change in the
symmetry properties of the adjacency matrix (from a non-
symmetric phase to a symmetric, maximally ordered one),
a typical behavior displayed within the theory of second-
order phase transitions and critical phenomena. The most
disordered phase corresponds instead to � � 0, since rij �
pij and the knowledge of the event j! i adds no infor-
mation on the event i! j. The point � � �1 is again,
even if not completely, informative since rij � 0.

The results discussed here represent a first step towards
characterizing the reciprocity structure of real networks
and understanding its onset in terms of simple mecha-
nisms. Our findings show that reciprocity is a common
26870
property of many networks, which is not captured by
current models. Our framework provides a preliminary
theoretical approach to this poorly studied problem.
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