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Two-Tone Suppression and Combination Tone Generation
as Computations Performed by the Hopf Cochlea
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(Received 12 December 2003; published 20 December 2004)
0031-9007=
Recent evidence suggests that the compressive nonlinearity responsible for the extreme dynamic range
of the mammalian cochlea is implemented in the form of Hopf amplifiers. Whereas Helmholtz’s original
concept of the cochlea was that of a frequency analyzer, Hopf amplifiers can be stimulated not only by
one, but also by neighboring frequencies. To reduce the resulting computational overhead, the mammalian
cochlea is aided by two-tone suppression. We show that the laws governing two-tone suppression and the
generation of combination tones naturally emerge from the Hopf-cochlea concept. Thus the Hopf concept
of the cochlea reproduces not only local properties like the correct frequency response, but additionally
accounts for more complex hearing phenomena that may be related to auditory signal computation.
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Introduction.—The determination of the working prin-
ciples of the mammalian cochlea presents a scientific and
technological challenge. Helmholtz was the first to come
up with an anatomically motivated cochlea model, hy-
pothesizing a place-frequency mapping along the cochlea
duct [1]: a specific place in the cochlea would respond
optimally to only one particular frequency, much like the
strings on a piano (the so-called tonotopic principle). The
essentials of this model were confirmed by von Békésy’s
physiological measurements [2] half a century later. He
observed traveling waves along the cochlear basilar mem-
brane (BM) that assumed a maximal amplitude at a place
determined by the frequency of the stimulation tone. These
findings were later explained from first principles by hy-
drodynamic models of the cochlea [3].

In the following decades, more precise physiological
measurements revealed a number of hearing phenomena
that cannot be explained using the aforementioned linear
theory. Eguı́luz et al. [4] were the first to point out that the
incorporation of Hopf oscillators in cochlea modeling
should enable the reproduction of the basic nonlinear
active hearing phenomena. Indeed, the correct frequency
response to single tones can be obtained using a biomor-
phic implementation of the Hopf amplifier concept [5].
They also proposed that more of the nonlinear phenomena
of hearing might be explained if stimulation was with more
than one frequency. In particular, they noted the missing
fundamental frequency problem and the fact that the in-
tensity of combination tones is not suppressed in a linear
fashion. Whereas the problem of the missing fundamental
can easily be explained by locking among limit-cycle
oscillations, the proper emergence of combination tones
has not as yet been shown.

In this Letter, we show theoretically and numerically
that the most pertinent nonlinear hearing phenomena
emerge naturally from the Hopf-cochlea model. In particu-
lar, we derive in a unified approach the laws that govern the
physiologically measured auditory combination tones and
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two-tone suppression. Two-tone suppression [6–8] de-
scribes the phenomenon that, if more than one tone are
presented to the cochlea, the effect is an attenuated re-
sponse to the tones. By completely suppressing small con-
tributions in close proximity, the representation of the large
components is significantly enhanced, and the spectrum in
a complex sound is substantially reduced. Combination
tones are autonomously generated in the cochlea, when
more than one pure tone arrive at the cochlea. Therefore,
the combination tones and two-tone suppression phe-
nomena are crucial for the sparse representation of audi-
tory signals. Modern space-minimizing formats of auditory
information storage systematically exploit these properties
(e.g., MP3 and Vorbis audio formats).

From this point of view, the notion that auditory com-
putations are already performed at the level of the cochlea,
before the signal is fed into higher (neuronal) processing
stages, is justified.

Biomorphic Hopf-Cochlea model.—In our model of the
cochlea, active contributions elicited by the auditory stim-
ulations are locally injected into the passive hydrodynamic
waves. It was shown [5] that this leads to the following
initial value problem for the one-dimensional energy den-
sity e�x;!�:
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in which the dissipation d is counteracted by the power a
delivered by the active process. vG is the group velocity.
Equation (1) originates in the steady-state situation, where
an energy-balance argument between dissipation and ac-
tive amplification can be made (for a detailed biophysical
derivation of the model see [5], where it is also shown how
second order couplings [9] lead to a fine-tuning of the
response). The active power a��� is determined from the
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fact that Hopf oscillators (i.e., hair cells active at location
x), deliver a force whose amplitude is proportional to the
Hopf response R; cf. Eq. (5),

a�e; x;!� � �R�
���������������
e�x;!�

p
��2: (2)

The locally generated forces lead [5] to a BM displacement

A�x;!� � �2e�x;!�=E�x��1=2; (3)

where E�x� is the exponentially decaying BM stiffness.
Equations (1)–(3) establish the connection between the
cochlea differential equation and physiological measure-
ments. For single tones, using realistic biophysical parame-
ters, even the simplest variant of our model leads to
responses that compare very well with physiological mea-
surements [Fig. 1(a); see also [5] ].

Active amplification is modeled by the generic Hopf
system [4]

_z � ��� i!0�z� jzj2z� Fei!t; z�t� 2 C: (4)

In this equation, ! 
 2�f is the frequency of the external
stimulation and !0�x� is the frequency for which at loca-
tion x along the cochlear duct the amplification is maximal
(this is how the tonotopic principle is implemented). z�t�
can be considered the amplification of the input signal F�t�.
In the absence of external forcing (F � 0), the equation
displays a Hopf bifurcation [10]: For parameter �< 0, the
solution z�t� � 0 is a stable fixed point, which for �> 0
becomes unstable and is replaced by a stable limit cycle
z�t� �

����
�

p
ei!0t. The steady-state solution for periodic

forcing is obtained with the ansatz z�t� � Rei!t�i�, where
a 1:1 locking between signal and system is assumed. The
response amplitude R is then determined from a cubic
equation in R2,

F2 � R6 � 2�R4 � ��2 � �!�!0�
2
R2: (5)

Below, we show how the detailed understanding of the
input-output relation resulting from this equation provides
the basis for understanding the most salient nonlinear
hearing phenomena, which are two-tone suppression and
combination tone generation. For � � 0 and close to
resonance! � !0, the response R � F1=3 emerges, which
forces the gain G � R=F � F�2=3 to increase towards
400 800
Frequency [Hz]

3

1

-1

-3

Log[A]

(a)

0 2 4
Frequ

0.01

1

BM velocity
[mm s

-1
]

(b)

80

70
4060

50

26810
infinity as F approaches zero. This implies a compressive
nonlinearity for stimuli of any intensity. For�< 0 and still
near resonance, we obtain for weak stimuli F the response
R � F=j�j. As F increases, the term R6 in (5) can no
longer be neglected, and the compressive nonlinear regime
is entered as R6 � �2R2. The transition occurs at Fcnl �
j�j3=2. Therefore, for weak stimuli F, the response R is
almost linear, whereas for moderate stimuli the differential
gain dR=dF decreases with increasing stimulus intensity.
Away from the resonance, the last term in Eq. (5) domi-
nates, leading to R � F=j!�!0j, which implies a linear
response to any input.

Presence of several or two tones.—In the presence
of two pure tones �F1; !1� and �F2; !2�, the driving
term of Eq. (1) becomes F�t� �

P
l�1;2Fle

i!lt� l �P
CTFCTe

i!CTt� CT , where CT indexes combination
tones of frequencies !CT�n;m� � n!1 �m!2, and
their phases  . Letting !2 >!1, due to structural proper-
ties of the cochlea, only the frequencies!CT0 � 2!1 �!2

and !CT1 � !2 �!1 are able to propagate, where the first
contribution is greater than the second [11]. Consequently,
we use the Fourier ansatz

z�t� � R1e�i!1t�i�1� � R2e�i!2t�i�2� � RCT0e
�i!CT0

t�i�CT0
�

�
X
j

Rje
�i!jt�i�j�; (6)

where fR1; R2g are the response components of frequencies
f!1; !2g and where the terms fRj;!j � n!1 �m!2g,
fn;mg 2 Z2 n f2;�1g account for the remaining combina-
tion tones [4].

In order to calculate the response generated at the loci
corresponding to f!1; !2g for two-tone suppression (and to
!CT0 for combination tones), this Fourier ansatz is inserted
into the generic Hopf equation. The combination tones are
of order m� n > 2 in the responses R1; R2. For the re-
sponses at frequencies f!1; !2g, we therefore collect con-
tributions to !1 and !2 up to third order. This yields

i!kRk � ��� i!0�Rk � Rk�jRkj2 � 2jRlj2�

� Fk exp��i�k�; (7)
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FIG. 1. Local BM frequency re-
sponses: (a) Hopf-cochlea model
Eqs. (1)–(3), where longitudinal BM
coupling has been included only.
Dashed line: passive response (stimulus
frequency: !=2� � 1000 Hz). For adja-
cent lines, the stimulus intensity differs
by 10 dB. (b) Experimental measure-
ments [13].
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where k � l 2 f1; 2g. After isolating the phases and multiplying by their complex conjugates, the responses
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with k � l 2 f1; 2g, are obtained.
The response corresponding to !CT0 leads, analogously, to
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This equation shows, using FCT0 � 0, that combination
tones are generated even in the absence of an external
driving. This is the case pertinent to the emergence of
combination tones.

It is essential to note that both phenomena, two-tone
suppression and combination tones, are captured by a
modified Hopf equation

F2 � R6 � 2 ~�R4 � � ~�2 � �!�!0�
2
R2; (10)

where ~� is an effective bifurcation parameter. For two-tone
suppression, we have

~�S;k � �� 2R2
k; (11)

for the combination tone, we have

~�CT0 � �� 2�R2
1 � R2

2�: (12)

Both modifications of � drive the bifurcation parameter
farther away to the left of the bifurcation point, which has a
natural interpretation as a suppression effect, as R �
F=j ~�j. This observation provides an explanation of the
two phenomena from the same fundamental principle,
Hopf’s equation [Eq. (5) and Eq. (10), respectively]. For
the comparison between the model and experimental mea-
surements, the BM response A of Eq. (3) is identified with
the Hopf response R, and the stimulation intensity Ik with
the square of the forcing F2

k, k 2 f1; 2g.
Results.—Physiological measurements of combination

tones use a variety of paradigms [12]. We restrict ourselves
to the case where the intensity I2�!2� is held fixed and
intensity I1�!1� is varied. Figure 2 shows that with the
active components implemented as discussed, our model
matches well with the experimentally measured physi-
ological membrane response. The main features of this
response can be explained from the most fundamental
ingredient of our cochlea model, the Hopf amplifier, in a
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simple way. In the physiological experiments and our
cochlea model simulations, a prominent 2 dB per dB
increase of the combination tone response is observed. At
about !CT0 � !0, we have RCT0 � R2

1R2= ~�CT0 for
R2
1R2 < j ~�CT0 j

3=2 [see Eq. (11)]. Since, for R2
1 � R2

2,
~�CT0 remains essentially constant when R1 is increased,
this explains why RCT0�I1� increases by 2 dB per dB. As
soon as R1 * R2, however, the increase of R1 drives ~�CT0
farther to the left, leading to a decreased response. This
explains the part of the curves left of the maxima. The
decrease to the right of the maxima is the effect of the Hopf
amplifiers serial cascade; the details of this more difficult
explanation is omitted. The explanation of the observed
right shift of the curves for increased I2 is simple again:
The maximum of the combination tone response is attained
for R2

1 � R2
2.

Also for two-tone suppression, an excellent agreement
between physiological measurements [6] and the model
response is obtained. This is shown in Fig. 3, where the
maximal BM response (cf. Fig. 1) is plotted vs the test-tone
intensity I1. For obtaining this correspondence, only the
dB-scale origin and the proportionality constant in Eq. (2)
determining the gain and the width of the compressive
nonlinearity had to be chosen appropriately in the model-
ing. Low-dB BM input-output curves slowly detach from
the zero suppressor curve, staying in its neighborhood up to
an intensity of 30 dB. This is the consequence of the strong
compressive nonlinearity inherited from the single fre-
quency response, for both modeling and experimental
results. A regime of strong suppressor efficacy—indicated
by large intercurve distances—that terminates in strongly
reduced suppressor efficacy is found adjacent to it. Again,
the Hopf response Eq. (5) provides a simple qualitative
and quantitative explanation: at sufficiently weak intensity
I2 of the suppressor, we are in the linear regime, where
0 70 80 90 100
level [dB]

FIG. 2. Combination tone generation:
BM response at a characteristic place
for a tone with frequency fCT0 � 2f1 �
f2, as a functon of f1 intensity. (a) Model
response (curves for f2 � 60, 70, and
80 dB; f1 � 930 Hz, f2 � 1000 Hz,
f2=f1 � 1:05). (b) Experimental mea-
surements [12].
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FIG. 3. High-side suppression:
(a) Model response [Eq. (3)] at reso-
nance. Suppressor intensities from 10
to 110 dB, in steps of 10 dB. The 10,
20, and 30 dB lines coincide (!t=2� �
0:9 kHz,!s=2� � 1:0 kHz). (b) Experi-
mental measurements [14] (!t=2� �
8 kHz).
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R2 � F2=j�j is valid. This implies that R2
2 � j�j, which

leads to ~�S;1 � �, thus the generated response curve is
confined to the close vicinity of the suppressor-free case.
For the same reason, the response of ~�S;1 to a change of F2

will be rather mild. Only if 2R2
2 becomes comparable to �

[dashed curve in Fig. 1(a)], the suppressor unfolds its
efficacy. When 2R2

2 dominates, we observe a linear loga-
rithmic suppression. Its efficacy decreases after the sup-
pressor has run in its compressive nonlinearity (dash-
dotted curve). This is when yet another regime of linear
logarithmic suppression emerges, where the spacings are
reduced to about one-third. By a rigorous analysis, the
factor of 1=3 can be made precise.

Discussion.—Using a biomorphic model of the cochlea,
we are able to give a detailed explanation of two-tone
suppression and combination tone generation, the two
most pertinent nonlinear hearing phenomena. Our results
show clearly that efficient signal compression mechanisms
are already performed by the biophysics of the cochlea.

Subcritical tuning of Hopf amplifiers and their embed-
ding in a biophysically detailed cochlea model were essen-
tial for the quality of the results. At first glance, the
impression may be that, in the presence of a second tone,
both critically and subcritically tuned systems become
subcritically tuned, rendering the latter distinction unsub-
stantial. This, however, is incorrect: Recall first that the
suppression threshold is given by R2

2 � j�j=2, for both
tunings [Eq. (11)]. The transition point for critical tuning
is therefore determined by Fcrit

1;cnl � 23=2R3
2, whose lower

bound is zero, attained for F2 ! 0. Fcrit
1;cnl therefore keeps

changing for arbitrarily weak suppressor intensities. This
implies that at about the zero suppression curve, no accu-
mulation of curves should be obtained, which is in contra-
diction with the physiological data [e.g., Fig. 2(b)]. For
subcritical tuning, j ~�j is bounded below by j�j. This
implies a stationary transition point Fsub

1;cnl � j�j3=2 for
26810
low suppressor intensities, in agreement with the observed
accumulation of low-dB BM input-output curves. Thus,
subcritical tuning is, indeed, responsible for the excellent
agreement between the modeling and physiology.
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