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Boundary impurities are known to dramatically alter certain bulk properties of (1 + 1)-dimensional
strongly correlated systems. The entanglement entropy of a zero temperature Luttinger liquid bisected by
a single impurity is computed using a novel finite size scaling or bosonization scheme. For a Luttinger
liquid of length 2L and UV cutoff €, the boundary impurity correction (8Siy,) to the logarithmic
entanglement entropy (S, o InL/€) scales as OSimp ~ ¥, InL /€, where y, is the renormalized backscat-
tering coupling constant. In this way, the entanglement entropy within a region is related to scattering
through the region’s boundary. In the repulsive case (g <1), 08y, diverges (negatively) suggesting that
the entropy vanishes. Our results are consistent with the recent conjecture that entanglement entropy
decreases irreversibly along renormalization group flow.
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Bosonic quantum field theories describe coupled quan-
tum oscillators and, therefore, even the ground state of
noninteracting fields may exhibit quantum correlations
over a long range. Consider the ground state of the free
electromagnetic field. An electric field amplitude E at a
point x is quantum correlated with an amplitude E’ at a
point x’ in that there are contributions to the ground state
wave function containing such products as ...|E), X
|E"). .... Since the ground state contains superpositions
of such states, it is said to be entangled—even though it is
a free field. If, in a d-dimensional spacetime, a spatial box
of volume L9~ ! is formed, it follows that the degrees of
freedom which reside exclusively in the box will appear to
be in a mixed state. The degree of mixing may be charac-
terized by the von Neumann entropy, S = —trp Inp, where
the reduced density matrix p has been formed by tracing
over the degrees of freedom exterior to the volume L¢™!.

Geometric or entanglement entropy formed in this fash-
ion was introduced in the context of black hole quantum
mechanics and Hawking-Bekenstein entropy [1], where it
was found that entanglement entropy is not an extensive
quantity but, rather, scales as the area of the bounding
surface, S o L9472 [2]. This highly suggestive result is
believed to bear some relation to holographic principle
proposals [3]. In condensed matter physics, the role of
entanglement entropy in understanding quantum critical
phenomena [4-6] and quantum phase transitions [7] has
recently been emphasized. The (1 + 1)-dimensional con-
formal field theories (CFTs)—which describe critical spin
chains, Luttinger liquids, and other massless theories—
have pointlike bounding surfaces; remarkably, the entan-
glement entropy was shown to depend universally upon the
central charge of the theory and to diverge logarithmically
with the length of the subsystem [4,8]. Specifically, the
entropy is given by S = §InL/e where c is the central
charge.

Studies of entanglement entropy have, so far, been re-
stricted to spatially homogeneous models. However, con-
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sider the artificial introduction of an inhomogeneity at one
boundary point. Quantum entanglements across the bound-
ary must be associated with scattering through the bound-
ary and, therefore, a boundary impurity that alters the
conductance is expected to alter the entanglement entropy.
Specifically, backscattering from an impurity should be
associated with negative corrections to the entanglement
entropy—if a sensible perturbative approach to this highly
nonlocal quantity can be found. In this Letter, we develop a
scheme by which these corrections to entropy may be
computed for a general boundary impurity model and
demonstrate a connection between the scaling of backscat-
tering and that of entanglement entropy for the specific
model of an impurity in a Luttinger liquid (LL).
Significantly, we find a logarithmic divergence in the en-
tropy computed in this fashion, which has its origin in an
infrared divergence in the effective boundary theory.
Finally, our perturbation theory directly addresses and
supports the conjecture [4] that entanglement entropy de-
creases irreversibly along renormalization group (RG)
flows.

We adopt the model of Kane and Fisher (KF) [9], in
which a single impurity in a Luttinger liquid was shown to
have a dramatic effect—either effectively decoupling the
two sides or effectively vanishing, depending on whether
the LL is repulsive (g <1) or attractive (g >1). The
behavior of S, suggests the following puzzle: If one
considers (following [10]) a “mixed” real space or mo-
mentum space basis where at wave number k there are a
series of (kL) spatial modes of width k~!, entanglement
entropy arises from those spatial modes that “‘straddle’” the
boundary; counting them naively gives In(kpyax/kmin) ~
InL/€ [11]. The UV divergence of the entropy is a con-
sequence of the unlimited number modes close to the
boundary. If an impurity is introduced into a repulsive
LL, the effective strength grows with inverse wave number,
and therefore the contributions to entanglement become
weak at the longest wavelengths. Using the KF scaling of
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impurity strength, one might estimate the correction to en-
tanglement entropy, 6S;y,,, by excluding contributions to
the sum above from wave numbers less than V(L/€)' ¢,
the approximate energy scale of the impurity in a finite
lattice (1/7 > L). This estimate gives 6Si,, ~ (g — 1) X
In(L/€) — const, which demonstrates the expected reduc-
tion. However, this estimate suggests that S, may still
diverge as L/e — oo, contrary to the expectation that the
impurity effectively “disconnects’ the two sides for g < 1.

To proceed, S, must be directly calculated or expressed
as operators with known LL scaling dimensions. However,
S.ne 18 an unusual, nonlocal quantity, and, despite its super-
ficial resemblance to a log-scaling marginal operator, it has
no simple operator representation within the LL. An ele-
gant geometric approach to this problem was pioneered by
Callan and Wilczek [12] (based upon work by Cardy and
Peschel [13]), who introduced a Euclidean path integral
representation for the geometric entropy of a (1 + 1)-
dimensional field theory computed on the half-infinite
spatial domain. First expressing the ground state wave
functional as a Euclidean path integral

V[p()] = ($l0) = [ Dpe 9] (1)

the ground state density matrix functional may be written
as a double path integral where one identifies the imaginary
time domain to be 7 € (—o0,0) for one path and 7 €
(o0, 0) for the other. Now the reduced density matrix func-
tional for the fields ¢. on half-line (x > 0), (¢, |pld_),
may be expressed as a path integral over the entire (1 + 1)-
dimensional Euclidean space [x, 7 € (—oo, 00)] with ¢ as
boundary conditions on either side of a cut along the polar
angle 6 = 0 (Fig. 1). If this cut is enlarged to a finite
“deficit angle” «, the path integral is now evaluated on a
cone.

Zo = {($:lpldb_) — f Dge 9. ()

R*/{6=0}

Using the replica trick, it was shown that the entropy
Sent = —trpInp may be written as a variation of the par-
tition function, Z,, with respect to a [12]. Specifically,

FIG. 1. Conical geometry corresponding to path integral (2).
Deficit angle, «, shown here is negative. Dotted line is the
(spacelike) impurity world line.

Sent = (=27-L + 1)InZ,| ,—o. Remarkably, this expres-
sion has the same form as thermodynamic entropy, o =
(—ﬁ% + 1) InZ, where B is identified with the complete

polar angle 2.

The action appearing in (2) is taken to be the LL action,
So, plus a weak impurity potential scattering term, Sjy,,. To
express the boundary conditions imposed in Eq. (2), the
action is written in polar coordinates:

S, = é f;”de f: rdr%[(a,qsy + r—12(a9¢)2} 3)

+y/

6==

fdr cos\/4mp(r, 6). 4

Without the impurity, the computation of Sg,, at zero
physical temperature, amounts to the computation of a
conventional thermodynamic entropy from the free energy
but on a conical manifold with the (imaginary) timelike
angle variable having period 8 = 27 + «. The corrections
to the entropy from the boundary, 8Sjy,, then involve the
finite temperature () corrections of the impurity free
energy, 0F, to the bulk free energy, F; specifically, the
variation of 6 F with respect to « about 8 = 2.

d
0Simp = (—277£ + 1)(—,86F)|a:0. (5)

However, as depicted in Fig. 1, the impurity world line
has become spacelike. This state of affairs is, in some sense
(see Fig. 2), analogous to the computation of finite length
corrections to the pressure in a Luttinger liquid due to a
single impurity. The correction to the pressure is a variation
of free energy with respect to length: 6p = —d6F/JL,
where OF is the lowest order correction to the bulk free
energy coming from the impurity. In the finite size scaling
regime in which L < B, 6F and, therefore, 6 p, depend
algebraically on length, although they both vanish thermo-
dynamically (i.e., 8F ~ L'72¢; §p ~ L™2¢). In the entan-
glement entropy problem, the finite temperature scaling
regime is reached when the quantization length scale ex-
ceeds the inverse temperature, S = 2. It is shown that
this condition is In(L/€) > B, which can always be met.

To compute 6 F, the degrees of freedom in the bulk are
integrated out to produce an effective boundary sine-

p

- sp~-YsF
Lz d

0 : L

FIG. 2. Computation of the finite L correction to the pressure
in the presence of an impurity (dotted line).
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Gordon action for the “past” and ‘““future” impurity fields
at @ = *=77/2. There are two complicating characteristics:
(1) The two impurity fields interact, and (2) the impurity
action lacks translation invariance which interferes with
the standard momentum shell renormalization group
scheme.

The free action (3) is brought into a separable Gaussian
form with the “log-periodic’’ expansion:

— 1 : K —iw,0
o(r, 0) = N kz;‘,) sm(km ln€>e ok, w), (6)
2mn —

where we introduce Matsubara frequencies w, = 5=

W that explicitly incorporate the deficit angle, wave
number k,, ="F, and P = ln%. The spatial modes are

made to vanish at L and at a radial UV cutoff, €. The
action now becomes

1
So= 2 330+ oDkl ()

Computation of S, proceeds exactly as the standard ther-
modynamics computation except the final replacement of
the sum over k,, by an integral now includes a logarithmic
density of states, InL/e. Within the (Cardy-Peschel-
Callan-Wilczek) conical geometry scheme, this is the ori-
gin of the logarithmic entanglement entropy.

Following the standard procedure for deriving the effec-
tive impurity action, we introduce a pair of impurity fields,
¢ (r), which correspond to the past and future branches of
the impurity world line. After the bulk fields ¢(r6) are
integrated out, the effective impurity action is diagonalized

with ¢, = %(¢ + @), yielding
S = SOI + S]

_1 o\(Taey O \(¢
g%ﬂkm)((p)( , #(k))((ﬁ)
+ 2y fL dr COS\/EQ’)(V) cosx/ﬂd_)(r), (8)

where d(k) = ktanh% and A(k) =1/ cosh%. This impu-
rity model closely resembles the double barrier impurity
model of [9] although the impurity world lines are space-
like. Similarly, the field ¢ has an energy gap of O(1/8),
and the action is minimized for ¢ = 0. Only the mode ¢ is
active, and we reach the final effective low energy action,
after setting A(k — 0) = 1 and rescaling ¢ — +/2¢:

1
g = g%d(kmwz(km) + yﬁL drcos\/4_77¢(r). 9)

As expected, the finite time scale, 3, appears in the
effective spacelike model for the impurity. In an ordinary
impurity model, renormalization group flow would termi-
nate at the time scale S, and thus the algebraic behavior
free energy could be directly determined. However, recall-
ing the “log-periodic’ substitution, Eq. (6), this model no

longer has translation invariance in r. For this reason, it is
not obvious how to implement a momentum shell renor-
malization group calculation. Instead, we directly compute
the corrections to the bulk free energy arising from the
impurity potential in (9) to lowest order in y:

1, [t L
~pare =1y / dr, [ dryG(ry, ry),  (10)

where

G(ry, ) = <eim¢(’1)e_i‘/4_”¢(’2)>sm. (11

G(ry, rp) is most easily calculated in terms of logarithmic
variables, p = Inr/e:

(Sinhw(PIB+pz))2g (sinhw(p‘[;p”) -2g

inh2™P1)8 (sinh2™P2)e
(sinh 7 )&(sinh B)

G(p1, p2) = (12)

From the form of G(p, p,), the free energy correction 6 F?
will be in the finite 8 scaling range (and thus depend upon
[ and the deficit angle « as desired) only if the character-
istic logarithmic length scale, p >> . Therefore, we arrive
at the condition for finite B scaling: InL/e > B.
Returning to radial variables, the ‘““log-periodic’’ behav-
ior is ultimately seen to lead to a large radial displacement
Green’s function that is algebraic in the ratio of radii,

r 1/Q2+a/m) (2 1/Q+a/m)
<”2> (”1)

The IR divergent part of the correction 8 F (10) comes from
ry ~ € and r; ~ L where G ~ (r,/r;)$/1*%/27) and thus
we arrive at the leading order divergence in the impurity
correction to the free energy:

vy [ B

IN\1—g+(ga/2m)
R
€

G(riry) = (13)

—,85F(2) :yzez

Finally, the boundary impurity correction, SSimp, to the
entanglement entropy is found from the variation of 6F
[Egs. (5) and (14), for g # 1 and L/e > 1]:

5Simp I4 INl-¢ L
= — — In— — , 15
e I~ (6> n— c(g) (15)

where c(g) is a positive constant, independent of L/e. For
§— L

oS, 1 L L
P = _In=(1—In=). 16
y’er2 4 ne( ne) (16)

For L/e > 1, the entropy correction is strictly negative
for all values of g. The appearance of the inverse tempera-
ture, B (or equivalently, the deficit angle «) in the exponent
of the free energy (14) is responsible for the negative value
of the entropy, 8Sin,, independent of g. In a free massless
gas, the free energy increases to zero as the temperature
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goes to zero (or 8 — 00), and thus the variation (5) yields a
positive entropy. Here, the free energy decreases as
B — 27 .

For repulsive Luttinger liquids (g < 1), 88y, diverges
algebraically in L/e, suggesting that the entanglement
entropy, in the presence of an impurity, is zero for suffi-
ciently large L. Note, however, that for finite (bare) cou-
pling y and finite L/e, the entanglement entropy is
nonzero, suggesting that high energy modes close to the
boundary remain entangled until a critical coupling or
length scale is reached. For attractive Luttinger liquids
(g > 1), 0Simp approaches a negative constant with alge-
braic corrections in L/€ that vanish as L/e — oo; there-
fore, an attractive LL remains maximally entangled. For
the noninteracting case (g = 1), the correction diverges as
In?L /€ suggesting that, even for the noninteracting fermi-
ons, the boundary impurity suppresses the entanglement
entropy.

Defining y, = ye as the dimensionless coupling on the
scale of the lattice and y, = y,(L/€)' ¢ as the renormal-
ized coupling on the scale L (using the RG results of [9]),
0Simp = ~Yo)r ln%. Our perturbative results may then be
improved by the renormalization group and written in the
following suggestive way:

S = (5~ 0. 0 a7
€

for g <1 (using ¢ = 1 for a spinless LL). In [4], entangle-
ment loss was suggested as a fundamental feature of the
irreversibility of renormalization group flow. This intrigu-
ing proposal followed along the lines of the *“c theorem” of
conformal field theory [14]. Refael and Moore [15] have
recently computed the entanglement entropy for strongly
disordered spin chains and found that S, remains loga-
rithmic, but with a universal prefactor ¢, which is smaller
than the central charge of the clean system, consistent with
this proposal. In the zero physical temperature KF impurity
model, RG flow is accessed through L /e — oo (which also
drives the system further into the finite § scaling limit on
which our results are based). Thus, noting the sign change
in the g-dependent prefactor of (15), 8Siy, strictly de-
creases for all g along the renormalization group trajectory
set by y, and increasing L/e.

Last, we find it significant that the logarithmic behavior
of the corrections to entropy [Egs. (15)—(17)] is now a
symptom of an IR divergence in the boundary theory,
rather than the logarithmic behavior of the wave numbers
(k,,' o InL/€) responsible for the entanglement entropy
within the Cardy-Peschel-Callan-Wilczek construction.

It should be noted that these results pertain to a LL
bisected by an impurity; it is unknown whether this result
remains true for a region of length L imbedded in an
infinite LL. [Recently, Calabrese and Cardy have given
generalizations to the bulk entanglement entropy for
unequal partitions of (1 + 1)-dimensional CFTs [5].]

Furthermore Eq. (17) does not reflect the contribution to
the entropy from the open boundaries at = L implicit in our
construction [5].

The bosonization scheme presented here may likely be
applied to Kondo-type impurities as well as spin chains
with comparable boundary impurities. Entanglement of an
impurity spin with conduction channels plays a crucial role
in more complicated boundary problems such as the two-
channel Kondo effect. Furthermore, the predictions for the
behavior of the entanglement entropy in the presence of an
impurity might be checked by density matrix renormaliza-
tion group (DMRG) methods, since DMRG explicitly fol-
lows the flow of eigenvalues of the reduced density matrix.
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