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Dislocations Deflect and Perturb Dynamically Propagating Cracks
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We demonstrate that in single-crystal silicon short-range collisions of a dynamically propagating crack
with stationary, intrinsic, ‘‘inclined’’ dislocations generate local crack deflections that grow to a large
surface perturbation. Experiments show that when the crack collides with a single dislocation, the
perturbation height is about 8 nm, but when it collides with a group of adjacent dislocations, the
perturbation may extend to 80 nm in height ��200j �bj� and 250 �m in length, visible to the naked eye.
A model was developed formulating the maximum velocity at which the crack climbs into the
dislocation’s core. The model predicts that when a dislocation’s line is perpendicular to the crack surface,
no interaction takes place.
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Dynamically propagating cracks in brittle crystals are
atomistically smooth, provided the crack velocity is within
0:4CR (CR being the Rayleigh free surface wave speed).
Causes of perturbations along the fracture surface in brittle
crystals have recently been investigated experimentally [1–
3], numerically [4–8], and theoretically [9–11]. It was
found that surface perturbations are triggered by dynamic
instabilities at higher velocities or by asperities, or result
from wave propagation. Several aspects of intrinsic defects
in brittle crystals, such as dislocations, as the source for
surface perturbations have been investigated. For example,
the coupling between a screw dislocation’s shear stress and
the crack’s tensile stress is responsible for the ‘‘softening
effect’’ during interaction [12]; the dislocation’s high shear
stress may reduce the cohesive energy of the cleavage
plane of the deflected crack, and the high tensile stresses
generated by the crack may reduce the resolved shear
stresses of the slip plane. The ‘‘shielding effect’’ of a
sufficiently closed dislocation near the crack tip was iden-
tified [13]; the dislocation may shield or antishield the
toughness of the material. One crack deflection mechanism
was discussed almost four decades ago [14]; it was sug-
gested that a screw dislocation located perpendicularly to a
crack plane generates a single Burger’s vector step on the
crack plane at the point of intersection. Large perturbations
can be produced only if many steps of the same sign
combine; but such an occurrence has never been detected
experimentally. Recently, however, detectable surface per-
turbations have been demonstrated; they where generated
in a silicon crystal during the interaction of a running crack
with a stationary dislocation located parallel to the direc-
tion of the crack’s propagation [15]. When the distance of
the dislocation line from the crack surface is smaller than a
certain critical length, the crack deflects into the disloca-
tion’s core, and the energy released from the relaxed dis-
location’s core is consumed by the new free surfaces of the
deflected crack. In the current contribution we describe and
analyze a more complex and general case of interaction, in
which a fast moving crack collides with a screw dislocation
04=93(26)=265501(4)$22.50 26550
inclined to the crack surface; resulting in the crack’s de-
flection and the generation of large surface perturbations.

We have recently shown that in thin, strip-shaped speci-
mens (cut from [001] wafers) subjected to three-point
bending (3PB), the cleavage plane of propagation in
defect-free silicon crystals is dictated by the crack velocity
[16,17]. Slower cracks propagate along the perpendicular,
{110} cleavage plane, faster cracks along the inclined,
{111} plane [Fig. 1(a)]. The fast cracks along the {111}
plane generate large surface perturbations [18–20], which
prevent visualization of the perturbations generated when
the crack collides with dislocations. It was therefore de-
cided to examine a collision on the ‘‘slow’’ {110} plane
which, in defect-free silicon, exhibits an atomistically
smooth fracture surface [21]. The shape of the crack front
as it propagates in the specimen is that of a quarter ellipse
[Fig. 1(b)] [22]. The parallel velocity at the bottom surface
of the specimens, Vx, was measured using the potential
drop technique [23]. It is emphasized that the velocity
normal to the crack front, Vn, is the important one in these
specimens, since it is the actual bond-breaking velocity.
That velocity is highest at the bottom of the specimen’s
surface (of the order of 1500 m=sec in our specimens)
Fig. 1(b), but decreases to about 30 m=sec close to the
top surface [16,17].

Thin wide strip-shaped specimens were cut from [001]
defect-free silicon wafers, 100 mm in diameter and
525 �m thick. In order to study the collisions of a dynamic
crack with stationary inclined dislocations, these were
created by plastic deformations in the form of slip bands
of dislocations induced in the specimens prior to 3PB. This
was achieved by subjecting the specimens to uniaxial
pressure of up to 10 MPa in the [001] direction at a
temperature of 900 �C for up to 10 min. The specimens
were then notched to a length of 0.5 to 1 mm with a
150 �m thick diamond saw and fractured under 3PB load-
ing [Fig. 1(a)]. One half of each specimen was used to
expose the site of the dislocations by etch pits [24], the
other was subjected to high-resolution electron microscopy
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FIG. 2. (a) Optical microscope micrograph of a slightly etched
(110) fracture surface, (b) Optical photograph of the (110)
surface, with the quarter-elliptical crack front (note the large
perturbations-free zone), (c) AFM micrograph of a small pertur-
bation resulting from interaction with a single perturbation
(velocity vector from right to left), and (d) large perturbation
resulting from interaction with several adjacent dislocations
(velocity vector from left to right).

FIG. 1. (a) Three-point-bending (3PB) loading of a thin wide
specimen, notched at one edge, (b) the shape of the crack front
[20], and (c) the schematics of the inclined dislocation line
[belonging to the (111) plane] with respect to the crack surface.
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(HRSEM) and atomic force microscopy (AFM) analyses of
the fracture surface. Specimens of a ‘‘control’’ group cut
from the same wafers, but with no dislocations induced,
were fractured along the (110) cleavage plane and analyzed
using HRSEM and AFM. They exhibited atomistically
smooth surfaces.

Since the energy of screw dislocations is about half that
of edge dislocations, the former are the ones occurring
preferably in silicon [25,26], and the dislocations in our
analysis are therefore of the screw type, belonging to the
{111} h110i family; 12 lines—three h110i dislocation
lines in each of the four {111} planes. However, only
two of these dislocation lines on each plane can collide
with a fast moving crack on the (110) surface, e.g., �111��
	0�11
 [see Fig. 1(c)] and �111�	0�1 �1
. In the former, the
crack deflects ‘‘upwards,’’ in the latter—‘‘downwards.’’
The third dislocation line is either parallel or perpendicular
to the (110) plane and is therefore not considered as
‘‘inclined.’’

Special care was taken to assure that crack deflection
and surface perturbations were initiated by collisions with
dislocation, and we demonstrate this conclusively in the
following. An optical microscope micrograph of a slightly
etched fracture surface proves that each perturbation origi-
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nated at a dislocation site, as shown by arrows in Fig. 2(a).
An optical micrograph with higher magnification of the
second half of the fractured specimen reveals the surface
perturbations along the (110) surface in that specimen (see
arrows in Fig. 2(b)]. Note the smeared surface in the zone
of high dislocation line density. Isolated dislocation were
designated A. An AFM micrograph of a single, small
perturbation is shown in Fig. 2(c), that of a large perturba-
tion—in Fig. 2(d). The height of the latter is approxi-
mately 80 nm, which is about 200j �bj. Note that the
perturbation generated during collision with a single dis-
location has a similar shape but is of a smaller size, its
height being nearly 8 nm. A possible explanation for the
large height of the perturbations lies in the coupling be-
tween the screw dislocation’s shear stress and the crack’s
tensile stress, known as the ‘‘softening effect’’ (see above)
[12].

The �111�	0�11
 dislocation line that interacts with the
propagating crack [Fig. 1(c)] is inclined at an angle, � �
60� to the (110) plane, as shown in Fig. 3(a), while the
projection of that line on the (110) plane and to the [ 1�10]
direction is at an angle, � � 54:7�. The normal velocity,
Vn, [Figs. 1(b), 2(b), and 3(a)] obeys Vn � Vx cos.
Assuming continuity of the crack front during climbing,
the normalized climbing velocity can be defined as

VCL
Vx

�
cos

cos��� � cos�
; (1)

where  is the angle of the normal-velocity vector along
the quarter-elliptical crack front with respect to the 	1�10

direction [22]. Figures 2(b) and 3(a), and obeying  �
tg�1	�0:8h=3h�2�x=y�
, where h is the thickness of the
specimen and x and y are the coordinates along the crack
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FIG. 3. (a) The velocity, VCL, at which the climbing crack
penetrates into the dislocation core and the associated angles
and velocities. (b) Schematic view of the perturbation. (c) The
intersection of the normalized climbing velocity, VCL, Eq. (1),
and the ‘‘forbidden zone,’’ the angle of propagation of an
individual perturbation � � compared with the local velocity
vector’s direction �� at interaction, and the normalized normal
velocity at the normalized coordinate y=h.
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front. The normalized velocity, Eq. (1), is plotted in
Fig. 3(c) as a function of the normalized position, y=h.

Observation of the (110) fracture surface reveals a zone
that is free of large surface perturbations resulting from
collisions with inclined dislocations. This zone is at the
bottom of the fracture surface, shown in Fig. 2(b), where
Vn is high. We term this zone as a (large) perturbations-free
zone. The measured length of this zone is y � 0:25h, and is
shown by the dashed line in Fig. 3(c). The maximum
velocity at which the crack is climbing into the disloca-
tion’s core is defined at the point of intersection, Fig. 3(c).
For Vx � 1500 m=sec, the maximum climbing velocity is
Vmax
CL � 1950 m=sec. The Rayleigh surface wave speed at

60� along the (111) plane is CR � 4530 m=sec [27], which
yields

Vmax
CL � 0:43CR: (2)

To the best of our knowledge, this is the first time the
maximum climbing velocity has been evaluated. The
physical meaning of this is that in this zone the crack
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cuts through the dislocations. As the parallel velocity, Vx,
drops, the perturbations-free zone is expected to be re-
duced in length. An important consequence of this analysis
is the verification of the velocity, VCL, of a crack climbing
into perpendicular dislocations [for example, the �1�11��
	110
 dislocation]. In this case the angle of dislocation with
the [110] direction, �, coincides with , Fig. 3(a), and the
angle of the dislocation with the (110) surface is � � 90�.
Substituting these values into Eq. (1) yields an infinite
climbing velocity regardless of . We therefore postulate
that the collision of a dynamically propagating crack with
perpendicular dislocations causes no large surface pertur-
bation to the extent described in this work (a Burger’s
vector step as was described in Ref. [14], and mentioned
above, is likely), and the crack cuts through the dislocation
line. This result can be verified by considering the elastic
fields of a perpendicular dislocation, which are symmet-
rical with respect to the crack surface. The interaction of
the crack with such a dislocation leads to only a limited
energy that is released from the dislocation’s core, presum-
ably responsible for a Burger’s vector-size step; a large
deflection, as described in this work, is physically avoided.
We further suggest that the ‘‘softening effect’’ [12] for
perpendicular dislocation lines is avoided due to the per-
pendicularity between the tensile stresses at the crack tip
and the shear stresses at the dislocation’s core.

The AFM, with its 50 nm tip radius, fails to describe the
exact shape of the perturbations at their edges. We accord-
ingly suggest the shape shown in Fig. 3(b). Generation of
the cometlike perturbations is described herein: When the
crack collides with the inclined dislocation’s core, it cuts
the core’s atomic bonds, and the atomic disorder vanishes.
The strain energy in the core is released in that portion of
the dislocation, to be consumed in the generation of the
new free surfaces, the ‘‘side walls’’ of the perturbation.
After reaching the maximum height, the crack is detached
from the dislocation line. Thereafter there is a gradual
reduction in the perturbation’s height. The ‘‘side walls,’’
having a cross section of nearly trapezoidal shape with a
slightly curved upper surface, propagate by atomistic steps
on the (111) and the (�1 �1 1) planes, as shown in Fig. 3(b).
This was detected by AFM [Figs. 2(c) and 2(d)]. It is an
important observation that the perturbations are nearly
straight, propagating at an angle  with respect to the [
1�10] direction, and are presumably smooth, which suggests
that the crack path in single-crystal silicon may be con-
structed from atomistically smooth steps. Atomistically
smooth and curved crack paths have recently been de-
scribed elsewhere [28].

We further suggest that the angle of propagation of a
perturbation,  , is determined by equilibrium between two
opposing mechanisms, namely, the direction of the local
normal velocity and the natural tendency of the perturba-
tion to propagate on the (111) and (�1 �1 1) planes. We
measured the value of this angle with respect to the [1�10]
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direction and its normalized initiation point, y=h. The
variations of  and  with the normalized position are
shown in Fig. 3(c). The normalized normal velocity
�Vn=Vnmax� is also shown in Fig. 3(c). The latter demon-
strates the influence of the velocity vector, direction, and
magnitude, on the angle of propagation of the perturba-
tions. Note the relationship between these two angles,
which is nearly 1:2.

The great extent of the perturbations is explained by the
slow reduction of the perturbation’s surfaces during crack
propagation. Its finite extent is determined by the reduction
of the kinetic energy and the fracture energy as the (nor-
mal) velocity decreases. In the lower portion of the cross
section, where the normal velocity is high, the perturba-
tions decay after reaching a length of about 250 �m. Much
shorter perturbations, only 40 �m in length, were observed
in the higher portion of the cross section, where the normal
crack velocity is nearly a few tens of m=sec.

In summary, we have shown the fundamental phenome-
non of crack deflection in single-crystal silicon when a
dynamically propagating crack collides with stationary,
intrinsic, and inclined screw dislocations, leading to high
and long surface perturbations due to that collision,
although the crack detached the dislocation line at the
beginning of collision. The crack climbs into the disloca-
tion core and relaxes its strain energy which, in turn, is
consumed by creating new free surfaces of the crack. The
maximum climbing velocity is about 0:43CR. At higher
velocities, the crack will cut through the dislocation line,
resulting in a large perturbations-free zone. It was also
shown that dislocation lines perpendicular to the crack’s
plane cause no large surface perturbations.

Surface perturbations generated during the propagation
of a dynamic crack are an important phenomenon in brittle
single crystals. A fundamental aspect, which is far from
being understood, is the dynamic of crack front propaga-
tion under repeated interaction with material imperfections
such as dislocations. The results presented here can serve
to gain a better understanding of the general phenomena
related to crack deflections and surface perturbations dur-
ing the propagation of a dynamic crack. They can also aid
in theoretical calculations and in numerical analysis, such
as molecular dynamics, in particular.
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