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Self-Consistent Finite-Mode Approximations for the Hydrodynamics of an Incompressible Fluid
on Nonrotating and Rotating Spheres
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Self-consistent finite-mode approximations for both Euler and Navier-Stokes equations for vorticity on
a sphere are constructed and extended to the case of a rotating sphere, aiming at application to ocean and
atmosphere modeling. In the absence of dissipation they preserve the specific Hamiltonian structure of
hydrodynamics and have, at each level of approximation, an appropriate number of integrals of motion,
which is not the case for standard schemes.
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The dynamics of the perfect incompressible fluid, if
considered from the Eulerian viewpoint, provides a pecu-
liar example of a noncanonical Hamiltonian system with
an infinite number of integrals of motion, in particular, in
two dimensions [1]. These integrals, called Casimir func-
tions, originate from the invariance under relabeling of the
Lagrangian particles and express, in the Eulerian language,
the fundamental property of fluids to preserve the circula-
tion along any liquid contour (Kelvin theorem). In geo-
metric terms [2], incompressible inviscid 2D flows
correspond to the area-preserving (symplectic) diffeomor-
phisms (one-to-one differentiable mappings of the domain
of the flow onto itself, to be called sdiff below), which form
an infinite-dimensional Lie group. The Hamiltonian struc-
ture is provided by the Lie-Poisson-Kirillov brackets de-
fined in the space dual to the Lie algebra of this group. This
Hamiltonian structure and all Casimir functions except for
the quadratic one, the enstrophy, are lost if a straightfor-
ward truncation in the Fourier space is applied, e.g., for the
purposes of numerical simulations. The problem of self-
consistent hydrodynamical truncations thus arises. This
problem is common for both Euler and Navier-Stokes
equations, as even in the presence of viscosity an inaccu-
rate discrete version of advection and pressure terms in-
duces spurious effects which give accumulating errors with
increasing integration time. For flows with periodic bound-
ary conditions (flows on the torus T2), this problem was
solved by the so-called sine truncations [3,4]: a sequence of
finite-mode approximations preserving the original sym-
plectic structure and providing an appropriate number of
Casimir functions for each size of truncation in the Fourier
space. In addition, the Casimir functions tend to original
ones when the truncation size tends to infinity. The idea of
these self-consistent truncations was based on the interpre-
tation of the 2D vorticity equation as an Euler system (see
below) on the coalgebra of sdiffT2 [2,4] on the one hand,
and on the observation [5] that sdiffT2 may be considered
as a N ! 1 limit of the finite-dimensional Lie algebras
su�N� on the other hand.

The sine truncations attracted considerable attention
afterwards. A fast symplectic integrator for them was
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proposed in [6]; the difference in statistical behavior of
the 2D turbulence simulated by standard versus sine-
truncations methods was studied in [7,8], and recently in
[9] in the context of the quasigeostrophic turbulence.
Consistency, convergence, and stability of the sine trunca-
tions were proved in [10]. Below we will present self-
consistent truncations on the sphere which are based on
the same principle as sine truncations, and show how
rotation may be accounted for.

Recall that for a N-dimensional Lie algebra L defined
by the commutation relations

�Li; Lj� � Ck
ijLk; i; j; k � 1; 2; 3; . . .N; (1)

among the generators Li which form a basis in the linear
space L, a natural dynamical system, the Euler system,
may be defined on L�, a space of 1 forms dual to L:

_! i � gljCk
ij!l!k: (2)

Here the dot denotes the time derivative, g is an arbitrary
symmetric constant metric tensor, Ck

ij are the structure
constants of L, and summation over repeated indices is
understood.

By antisymmetry of the structure constants the energy is
conserved:

H �
1

2
gij!i!j; _H � 0: (3)

Hamiltonian structure is provided by the Lie-Poisson-
Kirillov bracket defined for any pair of functions f�!�,
g�!� on L�:

ff; gg � Ck
ij!k

@f
@!i

@g
@!j

: (4)

Thus _!i � f!i;Hg. The bracket (4) is degenerate, as there
always exist the Casimir functions such that:

fC�!�; fg � 0; 8f; (5)

which are the integrals of motion.
The hydrodynamics on the sphere S2 is a Euler system

built from the structure constants of the Lie algebra of
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symplectic diffeomorphisms of the sphere sdiffS2 and the
metric tensor provided by the kinetic energy of the fluid.
The vorticity field in spherical coordinates �;� is:

!��;�� �
@v�
@�



1

sin�
@v�
@�

� v� cot�; (6)

and Euler and continuity equations are equivalent to the
vorticity equation

@t!� J ��
1
S !;!� � 0; (7)

where �S is the spherical Laplacian. The Jacobian in
spherical coordinates is: J �A;B� � 1

sin� �@�A@�B


@�B@�A�. There is an infinite set of Casimir functions:
any function of vorticity integrated over S2 is conserved, in
particular, any power of vorticity. The kinetic energy of the
fluid is

H � 

1

2

Z
S2
!�
1

S !: (8)

The standard spherical harmonics Ylm provide an ortho-
normal basis on the sphere. Expanding the vorticity field in
Ylm:

!��;�� �
X1
l�0

X�l
m�
l

!lmYlm��;��; (9)

and introducing quantities with lower indices via the rela-
tion: !lm � i �!lm � i�
1�m!l
m allows to rewrite (7) in
the form (2):

_! lm � 

X
l0m0

X
l00m00

�l0�l0 � 1��
1�l
00m00

lm;l0m0 �
1�m
0
!l0
m0!l00m00 ;

(10)

where

�l
00m00

lm;l0m0 � i�
1�m
00
Z �

0
d�

Z 2�

0
d� sin�Yl00
m00J �Ylm; Yl0m0 �

(11)

are the structure constants of sdiffS2 which arise in the
commutation relations:

iJ �Ylm; Yl0m0 � � �l
00m00

lm;l0m0Yl00m00 : (12)

The metric tensor is provided by the decomposition of (8)
in spherical harmonics and the use of the conjugation
properties: �Ylm � �
1�mYl
m. In order to get a self-
consistent truncation of (10) we introduce, following
[5,11], the matrices T�N�

lm with matrix elements:

�T�N�
lm �m1m2

� �
1���N
1�=2�
m1

��������������
2l� 1

p N
1
2 l N
1

2

m1 m m2

� �
:

(13)

Here and below the notation �:::� and f:::g is used, respec-
tively, for the 3j and 6j symbols of the angular momentum
theory [12]. T�N�

lm for odd N have the same normalization
26450
properties as spherical harmonics:

Tr�T�N�
lm T�N�

l0m0 � � �
1�N
1�m ll0 m�m00; (14)

and the following commutation relations:

�T�N�
lm ; T�N�

l0m0 � � f�N�l
00m00

lm;l0m0 T
�N�
l00m00 (15)

with structure constants:

f�N�l
00m00

lm;l0m0 � �1
 �
1�l�l
0�l00 ��
1�m

00�1

�
����������������
2l00 � 1

p ���������������
2l0 � 1

p ������������������������
2l� 1

p

l l0 l00

m m0 m00

� ��
l l0 l00

N
1
2

N
1
2

N
1
2

�
:

(16)

They form a representation of the algebra of unitary ma-
trices u�N� (su�N� if the unit matrix T�N�

00 is removed).
The matrices T�N�

lm and the spherical harmonics are in-
trinsically related. T�N�

lm are spherical tensors [12] built from
the N-dimensional vector representation S1; S2; S3 of the
group of rotations:

�Si; Sj� � i!ijkSk; i; j; k � 1; 2; 3: (17)

Spherical harmonics may be expressed [12] in terms of
harmonic polynomials of the Cartesian coordinates
x1; x2; x3 as:

rlYlm��;���
X

a�m�i1...il
xi1 ���xil ;r

2�x21�x22�x23; (18)

with a�m�i1...il
totally symmetric and traceless (for l > 1).

Following [5,11], one gets T�N�
lm by replacing x1; x2; x3 in

the right-hand side of (18) by three matrices X1; X2; X3

which are obtained from S1; S2; S3 by renormalization with
a factor 2���������

N2
1
p . Thus Xi become commutative in the limit

N ! 1. The particular form (13) is recovered by using a
special basis for Si [11]. The structure constants f�N�l

00m00

lm;l0m0

are obtained from (13) by a direct computation using the
definition of 6j symbols [12]. With a proper normalization
they tend to �l

00m00

lm;l0m0 as N ! 1 [5].
Thus, the algebra sdiffS2 may be recovered via the

sequence of the su�N� algebras (15) which may be used
to construct the finite-mode analogs of the vorticity equa-
tion on the sphere:

_! lm � 

XN
1

l0�1

XN
1

l00�1

Xl0
m0�
l0

Xl00
m00�
l00

�l0�l0

� 1��
1f�N�l
00m00

lm;l0m0 �
1�m
0
!l0
m0!l00m00 : (19)

This system possesses N 
 1 Casimir functions which are
obtained following [4] from the matrix invariants
Tr��!lmT�N�

lm �n�; n � 1; 2; . . . ; N 
 1. They correspond to
the integrated powers of vorticity, i.e., to the hydrodynamic
Casimir functions.
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Note that in the same way as ordinary Laplacian is built
from the spherical harmonics:

�S . . . �
4�
3

�
J �Y10;J �Y10; . . .��



1

2
J �

���
2

p
Y11;J �

���
2

p
Y1
1; . . .��



1

2
J �

���
2

p
Y1
1;J �

���
2

p
Y11; . . .��

�
; (20)

a discrete Laplacian

�N �
N2 
 1

2

�
�X3; �X3; . . .�� 


1

2
�X�; �X
; . . .�� 


1

2

� �X
; �X�; . . .��
�
; (21)

where X� � ��X1 � iX2� may be built from the operators
Xi; i � 1; 2; 3 or, equivalently, from T�N�

10 ; T
�N�
1�1 [11]. The

matrices T�N�
lm are the eigenfunctions of the discrete

Laplacian with the same eigenvalues 
l�l� 1� as the
eigenvalues of spherical harmonics with respect to �S.
This fact explains why the choice of metrics in (19) is
the same as in (10) and, in addition, allows to get a discrete
Navier-Stokes equation for vorticity on the sphere by add-
ing the term 
'l�l� 1�!lm in the right-hand side of (19).

In order to describe the incompressible hydrodynamics
on the sphere rotating with angular velocity � around its
axis, the Coriolis force is to be added in the equations of
motion. As usual in geophysical applications, the centrifu-
gal force will be absorbed in the pressure and will not
appear in the vorticity equation which may be rewritten in
the form of the potential vorticity equation:

@tq� J ��
1
S �q
 2� cos��; q� � 0; (22)

where q � !� 2�cos� is potential vorticity. If one notes
that cos� � 2

����
3

p
Y10, Eq. (22) in terms of decomposition in

spherical harmonics takes the following form:

_qlm � 

X
l0m0

X
l00m00

�l0�l0 � 1�
1�l
00m00

lm;l0m0 �
1�m
0
�

�

�
ql0
m0 
 4�

����
�
3

r
 �l0 
 1� �m0�

�
ql00m00 : (23)

Replacing �l
00m00

lm;l0m0 by f�N�l
00m00

lm;l0m0 and limiting summation by
N 
 1 gives consistent finite-mode truncations.

It should be emphasized that although the incompress-
ible Euler or Navier-Stokes equations on the rotating
26450
sphere are, obviously, not realistic models for oceanic or
atmospheric motions, the so-called quasigeostrophic equa-
tions (cf., e.g., [13]) for potential vorticity, which are
obtained, e.g., from the rotating shallow-water equations
by filtering the fast inertia-gravity waves, are. These equa-
tions for a single shallow-water layer have the same form
as (22), up to a change of metrics, and thus allow for su�N�
truncations. Following the lines of [14] where periodic
boundary conditions were used, consistent truncations
may be also constructed for multilayer geostrophic models
on the sphere, which are of extensive use in studies of
climate dynamics (cf. [15]). Topographic effects may be
easily included by adding corresponding terms to the po-
tential vorticity (cf. [9] for the periodic case). It should be
also mentioned that for flows on the rotating sphere, the
proposed truncations provide a possibility to study finite-
mode Rossby-waves dynamics in a consistent way [Rossby
waves are solutions of linearized Eq. (22)].
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