
PRL 93, 263602 (2004) P H Y S I C A L R E V I E W L E T T E R S week ending
31 DECEMBER 2004
Bose-Einstein Condensation and Strong-Correlation Behavior of Phonons in Ion Traps
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We show that the dynamics of phonons in a set of trapped ions interacting with lasers is described by
a Bose-Hubbard model whose parameters can be externally adjusted. We investigate the possibility of
observing several quantum many-body phenomena, including Bose-Einstein condensation as well as a
superfluid-Mott insulator quantum phase transition.
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Systems of ultracold bosons present a rich variety of
fascinating phenomena, like Bose-Einstein condensation
(BEC) [1], or the superfluid-Mott insulator (SI) quantum
phase transition [2]. At present, there exist very few
physical systems in which these effects can be observed.
Atomic gases constitute a unique system, since their
physical parameters can be adjusted using external fields,
which has enabled the observation of BEC [3] or the SI
transitions [4]. In this Letter we show that phonons in a
crystal of trapped ions interacting with lasers provide us
with another system where all these phenomena can be
observed in a very clean way. As for neutral atoms, the
physical parameters describing the phonon dynamics can
be adjusted using lasers. Furthermore, individual address-
ing yields new possibilities for investigating novel physi-
cal situations.

In our setup, the phonons are associated with the
motion of the ions. Coulomb interaction induces the trans-
mission of phonons from one ion to another, whereas
anharmonicities in the trapping potentials give rise to
an effective phonon-phonon interaction. Thus, an ion
crystal is analogous to an optical lattice [5], whereby
the ions play the role of lattice sites and the phonons
that of the atoms. An important feature is that, due to
energy conservation, phonons cannot be created or anni-
hilated. This is in contrast with usual solid state systems,
where phonons are subjected to processes that do not
conserve their number thus preventing them from reach-
ing, e.g., BEC. Furthermore, the theoretical [6,7] and
experimental progress [8–10] in the field of trapped ion
quantum computation can be exploited in the present
context to gain access to physical observables which are
not reachable in other systems.

Let us consider N trapped ions confined by external
electric potentials and which move around their equilib-
rium positions. The corresponding Hamiltonian is H �
K � V0 � VCoul, where K describes the kinetic energy, V0

the trapping potential, and VCoul is the Coulomb interac-
tion between ions. We will assume that: (i) the motion of
the ions along one particular direction, say x, is de-
coupled from the motion along the other directions; (ii)
the trapping potential along x for each ion is practically
harmonic with frequency !, i.e., it is given by 1

2m!
2x2i ,
04=93(26)=263602(4)$22.50 263602
where xi denotes the operator corresponding to the dis-
placement of the ith ion; (iii) the displacements around
the equilibrium position are much smaller than the dis-
tances between ions; (iv) the Coulomb energy is small
compared to the potential energy, i.e., 	 :� e2=
�d30m!

2� � 1, where d0 denotes the average separation
between ions. The first requirement (i) allows us to ignore
the motional state of the ions along the y and z directions.
Condition (ii) allows us to associate phonons to each of
the ions in the usual way [7]: if the vibrational state of the
ith ion is given by the nth (Fock) excitation state of the
corresponding harmonic potential we will say that the ion
has n phonons and denote the corresponding state by jni.
The position operator of the ion can be then written in
terms of creation and annihilation operators for the pho-
nons, i.e., xi / �ai � a

y
i �. Condition (iii) allows us to

express the Coulomb interaction between ions i and j as
�e2=d3i;j�xixj, where di;j is the distance between the ions. It
is clear that this term will induce hopping of phonons
between the ions since it contains terms of the form ayi aj.
On the other hand, condition (iv) imposes that the phonon
number is conserved, since the terms of the form aiaj
would decrease the energy by 2!, something which can-
not be compensated by the Coulomb interaction. Finally,
the anharmonicities of the trapping potential will be, in
lowest order, described by terms of the form x3i or x4i .
Again, only energy-conserving terms will be important
and thus only those proportional to ayi ai or ay2i a

2
i will

survive. The first one will add some small correction to
the trapping frequency, whereas the second term can be
associated to an effective phonon-phonon interaction.

Thus, we have shown that the dynamics of the phonons
in an ion crystal will contain hopping terms, as well as
on-site phonon-phonon interactions, and therefore they
will be described by a Bose-Hubbard model (BHM).
Typically, the trapping anharmonicities will be very
small. However, they can be enhanced by using off-
resonant lasers. For instance, one may induce repulsive
(attractive) phonon-phonon interactions by placing the
ions near the maximum (minimum) of a standing wave,
something which will induce an ac-Stark shift /
cos�kxi�2 
 1� �kxi�2 � �1=3��kxi�4, where k is the
wave vector of the laser.
-1  2004 The American Physical Society



PRL 93, 263602 (2004) P H Y S I C A L R E V I E W L E T T E R S week ending
31 DECEMBER 2004
There are several physical setups which realize a BHM
as explained above. In the following we will concentrate
in the simplest one, which consists of ions in a linear trap.
Let us emphasize, however, that with ions in microtraps
[11] or in Penning traps [12] one can realize higher
dimensional situations.

In a linear trap, ions are arranged in a Coulomb chain.
Phonons moving along the chain cannot be used in the
way we described above since for them 	 * 1 [13,14].
However, transverse phonons corresponding to the radial
modes fulfill 	� 1 and thus are perfectly suited for our
purposes. The radial phonon dispersion relation has a
large gap of the order of !, giving rise to the phonon-
number conservation, and has a bandwidth of the order of
	!. Therefore, we take x as one of the transverse direc-
tions and z the trap axis. The Hamiltonian of a chain with
N ions is

V0 �
1

2
m
XN
i�1

�!2
xx

2
i �!

2
yy

2
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zz

2
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(1)

where !�, � � x; y; z, are the trapping frequencies in
each direction, and we define 	� as the ratios between
Coulomb and trapping energy. If!x;y � !z the ions form
a chain along the z axis and occupy equilibrium positions
z0i . Phonons in the x direction can be described approxi-
mately by
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!x;i are spatial dependent shifts of the trapping fre-
quency, and ti;j are hopping energies. Note that both of
them are of the order of 	x!x. The approximations that
lead to (2) are (i) In VCoul, we keep only second order
terms in the displacements of the ions. Higher order terms
are of the form x4, x2y2, zx2. They can be neglected
assuming that x0=d0; z0=d0 � 1, with x0, z0 the size of
an individual ion’s wave packet. x0 can be estimated by
the size of the ground state in the radial trapping fre-
quency and for typical parameters (d0 � 5 �m, !x �
10 MHz, also used below) we have x0=d0 
 103. In the
case of z0, one has to consider the collective nature of the
axial modes, because 	z � 1 if N � 1. If we consider
axial modes at a finite T, z0 is given by the thermal
fluctuations of the position of the ion. In the limit N �

1, we can estimate z20 
 �h=2m!z
�������������������
	z log	z

p
�kBT= �h!z�,

which means that z0=d0 
 103kBT= �h!z, with !z �
100 kHz, N � 100 (see [15]). (ii) We consider 	x � 1,
and neglect phonon nonconserving terms in the couplings
of the form xixj / �ayi � ai��a

y
j � aj�.
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We also include the effect of a standing wave in Hx,
such that a repulsive phonon-phonon interaction is in-
duced [7]: Hsw � F

PN
i�1 j0iih0jcos

2�kxi�, where j0ii is
the internal ground state. In the following we will assume
that ions stay always in j0ii, and expand the standing
wave in the Lamb-Dicke parameter, � � kx0= �h!x:

Hsw�F
XN
i�1

�1��2�ai�a
y
i �

2�
1

3
�4�ai�a

y
i �

4�O��6��:

(3)

The fourth order contribution contains a Hubbard inter-
action, Uay2i a

2
i , with U � 2F�4 (note that U < 0 if the

ions are placed at the minimum). The other terms in
Eq. (3) are (i) phonon conserving terms that just give
corrections to the trapping frequency; (ii) phonon non-
conserving terms, that rotate with frequency !x. The
nonconserving contributions can be adiabatically elimi-
nated if F�2=!x � 1. For example, in the case of the
second order terms, F�2�a2i � a

y2
i �, a perturbative calcu-

lation shows that they only give harmonic corrections of
the form ��F�2�2=!x��2ayi ai  1� �O�F�2�3=!2

x.
Thus, the contributions from phonon-number noncon-
serving terms either give corrections to the trapping
frequency or can be neglected when compared to U.

The final Hamiltonian takes the form of a BHM:

Hx � Hx0 �
XN
i�1

Uay2i a
2
i ; (4)

where we include inHx0 the corrections from the standing
wave. Note that as long as the number of phonons is
conserved, !x in Hx0 is a global chemical potential that
does not play any role in the description of the system.

We discuss now the properties of the solutions of the
noninteracting Hamiltonian, Hx0. A quite unexpected
result is that the Coulomb interaction induces the con-
finement of the radial phonons. This is due to the fact that
the distance between ions is larger at the sides than at the
center of the chain, and is well described by a quadratic
dependence on the position of the ions. Thus, the correc-
tions !x;i in Eq. (2) are smaller for the ions placed at the
center, in such a way that the radial phonon field is
confined (Fig. 1, left). The harmonic phonon confinement
can be estimated by means of Eq. (2) in the limit N � 1.
In this case, the distance between ions at site i satisfies
[13]:

1

�d�i0�=d0�
3 
 �"

�
i0

N

�
2
; �� 3:4; "� 18; (5)

where i0 � i N=2. One can use Eq. (5) to describe
qualitatively the dependence of !x;i with the position.
We include only Coulomb interaction between nearest
neighbors in order to get analytical results. The spatial
dependent part of the noninteracting boson Hamiltonian
is given, in this approximation, by
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��ayi ai�1 � h:c:�: (6)

In the limit of many ions and low energies, the continuum
limit in this expression describes a one-dimensional sys-
tem of bosons trapped by the frequency !c 

�8=N�	x!x. The lowest collective modes in the exact
spectrum show a linear dispersion that is well described
by our estimation for !c (see inset of Fig. 1, left). Thus,
radial phonons in linear Paul traps are confined by an
approximate harmonic potential (Fig. 1, right).

Our ideas lead to the following two proposals of ex-
periments with linear Paul traps:

(i) Superfluid-Mott insulator transition and creation of
a superfluid phonon state by adiabatic evolution.—
Hamiltonian (4) describes a BHM with the peculiarity
that hopping terms are positive and long range. However,
we can understand the properties of our system by means
of the better known model with nearest-neighbor hopping
only [2,16]. Let us consider t � �1=2�	x �h!x, the charac-
teristic hopping energy. If the total number of phonons
Nph is commensurate with the number of ions N, then, for
U� t, the ground state of (4) is a Mott insulator, well
described by a product of Fock states withNph=N phonons
in each ion (note that phonon confinement, �h!c is also of
order t, so that conditionU� t ensures a uniform phonon
density). On the other hand, the ground state for U� t is
a superfluid with all the phonons in the lowest energy
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FIG. 1. Left: Phonon trapping potential (2) for the radial
modes of a Coulomb chain with N � 50 ions, and 	x � 102,
as a function of the ion position along the chain. Left, inset:
Spectrum of the radial collective modes that diagonalize Hx0.
We plot the energy of the modes relative to the minimum
phonon energy, �x;q � ��x;q �x;0�=!x, where �x;q is the
energy of the collective modes, and q is the mode number.
Right: Mean phonon-number hnii � hayi aii along Coulomb
chains with different number of ions, N, in the state with Nph �

N phonons in the radial lowest mode. The width of the wave
function in units of N, is / 1=

����
N

p
, in accord with the scaling for

the phonon trapping frequency, !c / 1=N.
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level. In Fig. 2, we present the results of an exact numeri-
cal diagonalization of the complete phonon Hamiltonian
(that is, including also the phonon-number nonconserving
terms) for the case Nph=N � 1. The transition from the
superfluid to the Mott insulator, is evident in the evolution
of the phonon density as a function of the interaction U.

The properties of the BHM allows us to propose an
experimental sequence that would lead to the observation
of the SI quantum phase transition: (1) The ion chain is
cooled to the state with zero radial phonons by laser
cooling. (2) Starting with a value U� t, the eigenstates
of the system are well described by Fock states localized
at each ion. The ground state of the phonon system can be
created by means of sequences of blue/red sideband tran-
sitions, in a method that has been successfully imple-
mented with single trapped ions (see [8]). (3) The value of
U is varied adiabatically down to a given value Uf, in
such a way that the system remains in the ground state. At
a given critical value Uf 
 t, the system undergoes a
transition to a phonon superfluid. (4) Properties of the
phonon ground state are measured by the method ex-
plained below.

Phonons cannot be directly detected, but the measure-
ment of the phonon state can be accomplished by the
coupling to a given internal transition. One can apply,
for example, a red sideband pulse with intensity g, for a
short time t, and measure the photoluminescence from
each ion (see [17] for the setup and requirements). This
experiment can be repeated many times to obtain the
averaged photoluminescence, which corresponds to the
transition probability to the excited internal state, P"�t� �P
n�sin�

���
n

p
gt��2P�n� 


P
nng

2t2P�n�, where P�n� is the
probability of having n phonons. In this way the SI
transition is evidenced in the variations of the phonon
density along the chain (Fig. 2). Furthermore, detection
of P"�t� for longer times would allow us to measure P�n�
[8], and detect the phonon-number fluctuations in the
superfluid phase, even without resolving the ions indi-
vidually. Finally, quantum tomography would allow us to
get the whole phonon density matrix [10].

(ii) Bose-Einstein condensation by evaporative laser
cooling.—We propose an experiment that is akin to the
usual BEC of cold atoms in harmonic traps. First, we note
that techniques for cooling of trapped ions, like laser
cooling [10,18] can only be used to destroy phonons.
The existence of the trapping phonon potential in ion
traps allows us to propose the combination of laser cool-
ing with the idea of evaporative cooling. A possible
experimental sequence would be as follows: (1) Start
with a Coulomb chain after usual Doppler cooling, that
is, a chain with a given number of phonons per site, and
induce a small phonon-phonon interaction U� t, so that
the system remains in the weak interacting regime. (2)
Apply laser cooling at the sides of the Coulomb chain, in
such a way that the higher energy phonons on the top of
the confinement potential are destroyed (evaporated).
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FIG. 2. Mean phonon number at each ion in the ground state
of a Coulomb chain with N � 6, Nph � 6. 	x � 0:01, so that
the nearest-neighbor hopping terms are t 
 5103!x. Black
circles: phonon density without standing wave (U � 0), which
shows the confinement due to the phonon trapping potential.
Empty circles: Mott phase when a standing wave is applied
with F�2 � 0:1!x, �2 � 0:1, and U 
 0:02!x > t. Squares:
U � 0:01!x, Triangles: U � 5� 103!x.
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(3) The interaction U induces collisions that thermalize
the phonons to a lower temperature. Several cycles of
laser cooling/thermalization can be applied until the sys-
tem is cooled below the temperature for condensation.
Detection of the BEC can be accomplished along the
same lines exposed above for the case of the BHM. In
the 1D case considered here, BEC would not be possible at
finite T, in the thermodynamical limit (N ! 1). In finite
systems, however, there exists a finite temperature at
which the occupations of the excited states saturate, and
phonons condense in the lowest mode [22].

We have shown that phonons in a system of trapped
ions can be manipulated in such a way that they undergo
BEC, or a SI transition. The main ingredients of our
proposal are (1) Phonons can have a large energy gap
that suppresses processes that do no conserve the number
of phonons. (2) Phonon-phonon interactions (anharmo-
nicities) can be induced by placing the ions in a standing
wave. (3) In the particular case of ions in a linear trap,
radial phonons would be suitable for this proposal, and
Coulomb interaction provides us with an approximately
harmonic phonon confinement.

In this work we have exposed only a few applications of
this idea, but phonons in trapped ions can be used to study
quantum phases with a degree of controllability that is not
possible with cold neutral atoms. Individual addressing
would allow us to design Hubbard Hamiltonians with site
dependent interactions. Different directions of the radial
modes, or different internal states, would play the role of
effective spins [19] for the phonons. On the other hand,
one can also reach the regime dominated by the repulsive
interaction and create, thus, a Tonks-Girardeau gas of
263602
phonons [20,21] in a Coulomb chain. In a very promising
approach, 2D systems of arrays of microtraps [11], or ions
in Penning traps [12], can be considered, because pho-
nons transverse to the crystal plane satisfy the conditions
required by our proposal.
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