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We present a calculation of the fully differential cross section for Higgs-boson production in the gluon
fusion channel through next-to-next-to-leading order (NNLO) in perturbative QCD. We apply the method
introduced in C. Anastasiou, K. Melnikov, and F. Petriello, Phys. Rev. D 69, 076010 (2004), to compute
double real emission corrections. Our calculation permits arbitrary cuts on the final state in the reaction
hh — H + X. It can easily be extended to include decays of the Higgs boson into observable final states.
In this Letter, we discuss the most important features of the calculation, and present some examples of
physical applications that illustrate the range of observables that can be studied using our result. We
compute the NNLO rapidity distribution of the Higgs boson, and also calculate the NNLO rapidity

distribution with a veto on jet activity.
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With Run II of the Tevatron producing data and the LHC
set to begin operation in 2007, hadron colliders will soon
play a major role in understanding the mechanism of
electroweak symmetry breaking. Within the standard
model, this mechanism is linked to the Higgs boson, a
scalar particle whose nonzero vacuum expectation value
gives rise to the masses of all elementary particles. Finding
the Higgs boson and analyzing its properties are therefore
important parts of the high-energy physics program in the
next decade.

Hadron colliders, while offering substantial increases
in energy over existing lepton machines, present several
obstacles to performing precision physics studies.
Nonperturbative QCD enters the calculation of cross sec-
tions through both parton distribution functions (PDFs) of
hadrons in the initial state and properties of jets in the final
state. Perturbatively, the large value of the QCD coupling
constant and the enhanced sensitivity to the factorization
and renormalization scales force calculations of many
important processes to be extended to next-to-next-to-
leading order (NNLO) in the QCD coupling constant.
This reduces the unphysical sensitivity of the result to the
renormalization and factorization scales; also, the addi-
tional partons model the structures of both colliding had-
rons and final-state jets more accurately.

There has been significant progress in the past several
years in performing inclusive and semi-inclusive NNLO
calculations [1-5]. However, because of the cuts on the
final states typical for the LHC and the Tevatron, such
results are of limited use. A fully differential, partonic
Monte Carlo event generator is preferable. It is then guar-
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anteed that, to a given order in the perturbative expansion,
there is full control over hard emissions and the normal-
ization of a given observable. However, this approach
cannot be applied if the observable is dominated by regions
of the phase space where soft and collinear effects are
enhanced, and the resummation of certain higher order
corrections may be necessary. In such situations, shower
Monte Carlo event generators are used; they correctly
describe the soft and collinear limits of the real emission.
However, they cannot reproduce the properties of hard ra-
diation, and are unsuitable for precision studies. Ideally, we
would combine perturbative results with shower Monte
Carlo generators to gain the advantages of both ap-
proaches. This has been achieved at NLO [6], but has not
been extended to higher orders. Constructing fully differ-
ential perturbative results is a first step toward this goal.

Extending exclusive calculations to higher orders is not
straightforward. While at NLO this problem has been
solved [7], a similar solution at NNLO is not yet available,
despite significant effort [8]. The primary obstacle is the
double real-radiation contribution to NNLO cross sections,
which contains two additional partons in the final state.
The singularity structure resulting from these emissions is
significantly more complex than at NLO, and prevents the
use of NLO techniques.

We have recently suggested an alternative approach to
the problem of real radiation at NNLO [9], which allows
differential results to be obtained in an efficient, automated
fashion. We have tested our idea on the realistic example of
ete” — 2 jets at NNLO [9,10]. In this Letter we apply our
method to calculate the fully differential cross section for
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Higgs-boson production at hadron colliders through
NNLO in QCD. Since our result retains all kinematic
information, it can be used to compute arbitrary differential
distributions or to construct a partonic event generator
accurate to NNLO.

The dominant production mechanism for a light Higgs
boson at hadron colliders is gluon fusion, gg — H, through
a top quark loop. If the Higgs boson is sufficiently light,
my, <2m,, its coupling to gluons can be described by a
pointlike vertex. Within this approximation, the NNLO
corrections to the inclusive cross section for Higgs hadro-
production have been considered recently in [1], where a
detailed description of the setup can be found; the remain-
ing theoretical uncertainty after this calculation is
10%-15%. The two-loop virtual corrections required for
Higgs production are identical for differential distributions
and the total cross section. The one-loop corrections to
single real-radiation processes (gg — H + g, qg— H +
g, qg¢ — H + g) can be computed easily with established
methods [5]. The difficult contributions are the double real
emission corrections that first appear at NNLO.

We use the method first presented in [9] to calculate
these components. We combine an expansion in plus dis-
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tributions with sector decomposition [11] to separate and
extract their singularities. This requires a parametrization
of the phase space in which the integration region is the
unit hypercube. In principle, any mapping that accom-
plishes this is acceptable. In practice, finding a convenient
parametrization that reduces the number of sector decom-
positions is important for the efficiency of the approach.

For the double real emission corrections to Higgs pro-
duction at NNLO, we must parametrize a 2 — 3 particle
phase space, with one massive final-state particle. We
consider here g(p;) + g(p,) — H(h) + g(p3) + g(p4) as
a prototypical partonic process. For a fixed energy of the
partonic collision (p; + p,)*> = s, the partonic phase space
is described by four independent variables. We found it
useful to employ several different parametrizations of the
partonic phase space. We present here explicit formulas
only for the parametrization which is the most convenient
choice for the majority of diagrams. The scalar products
s3a = (p3 + pa)*, sy = (pi — p)* and s; = (p2 — p))*,
where i = 1,2 and j = 3, 4, take on simple forms in this
parametrization, while the s;; contain overlapping singu-
larities, and require sector decomposition when appearing
in the denominator. In this parametrization, the 2 — 3
phase space becomes

= Nﬁl dAydAydAzdAg[(1 — A)(1 — MK, /K )] T A (1 = AT [As(1 — A3) ]2 [A,(1 — A2
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where d =4 — 2¢e is the space-time dimensionality,
[dg] = dg"~ /(2qo), == m? /s, N = Q(d — 2)Q(d — 3) X
(1 —z)3%€/24%2€ O(d) = 27w%*/T(d/2), and the inde-
pendent scalar products are
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We have introduced the notations u = [z + A3(1 — z)]/
[1-M0-2] r=\u, t=z K,,=Frx)(1=*r),
A] = )ll(l - /\2)(1 + I/l)z, and A2 = /\2(1 - )\l) X
rK, — \MK,,).

With the expressions given above, it is, in principle,
straightforward to apply the method explained in [9] to
derive the finite, fully differential cross section for Higgs
production at NNLO. However, some technical points
warrant further discussion. A brute force application of

2

(D

the algorithm in [9] typically produces very large expres-
sions. It is therefore important to organize the calculation
efficiently.

(i) We found it important to identify all possible sym-
metries of the process, and utilize the fact that many terms
in the matrix elements are identical under a simple rotation
of momentum labels, in order to reduce expression sizes.

(i1)) We found it useful to introduce a specific phase-
space parametrization only for the denominators of the
matrix elements. We keep the numerators written in terms
of invariant masses. We therefore divide the expressions
into universal denominator structures (topologies), valid
for any 2 — 3 real emission correction with one massive
final-state particle, and process-dependent numerators.
This allows us to implement other processes in our code
very simply.

(iii) A few topologies contain denominators that depend
quadratically upon A;. Since the full matrix elements do
not contain quadratic singularities, there must be numera-
tor structures responsible for regulating this behavior. We
therefore cannot trivially keep the numerator written in
terms of invariant masses for these terms. It is usually
simple to identify the required numerator structure. An
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example found in Higgs production is the topology
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The left-hand side of Eq. (3) naively has quadratic singu-
larities, but, as shown, we can identify the required scalar
product in the numerator that regulates these. We can now
write le(sij) using invariant masses, and introduce a spe-
cific parametrization for the remainder.

(iv) As in previously studied examples [9], the matrix
elements contain ‘“‘line” singularities that arise when a
singularity is mapped to an edge of phase space. These
are removed using an additional variable change A; — A;,
as discussed in [9].

(v) When we convolute the partonic cross sections with
the PDFs to form the hadronic cross section, the variable z
scales as z — m3 /(x| XySpaq), Where sp,q is the hadronic
center-of-mass energy squared, and x; are the fractions of
the hadronic momenta carried into the hard scattering
process. The partonic cross sections are distributions in z,
and are singular in the limit z — 1. It is clear from Eq. (1)
that the factor (1 — z)~*¢ which regulates this limit has
been extracted, and therefore singularities in z and A; can
be treated identically.

After the extraction of singularities, we can combine the
double real emission corrections with the remaining con-
tributions to the hard scattering cross section. This expres-
sion is then integrated numerically together with the PDFs
to form the hadronic cross section. We perform the nu-
merical integration with the version of VEGAS described in
[12]. We use the Martin-Roberts-Stirling-Thorne PDF sets,
with mode = 1. The numerical integration we perform is
six-dimensional; this includes the four independent par-
tonic variables and the two x;. The CPU times required for
this calculation depend strongly on both the kinematics and
the requested precision. For Tevatron kinematics, reaching
1% precision on the inclusive cross section requires 0.5 h,
while obtaining 1% at the LHC requires about 1.5 h. When
constraints are imposed on the final state, the run times
increase.

We have performed several checks on our calculation.
We cancel 1/ € poles numerically, as is typically done using
this method [9,10]. The singularities begin at 1/€*, and
involve all the different contributions to the final result:
two-loop virtual corrections, ultraviolet renormalization,
virtual corrections to NLO processes, double real emission,
and collinear subtractions for PDFs; the cancellation of the
singularities is therefore a strong check on the calculation.
We find that the singularities cancel to a high precision for
both the inclusive cross section and all distributions we
have studied. For example, the € expansion for the NNLO
inclusive cross section at the LHC is

o=(—0.05%2)X107%/e* + (—0.7 £2) X 1073/¢€
+(—=03+2) X103/ +(-3+9) X107 3/e
+ (44.9 = 0.4). 4)

These results are in picobarns, and are obtained using
my, = 120 GeV and m, = 175 GeV; for this and other
results in this Letter, higher order QCD corrections are
obtained using the effective Lagrangian valid for m;, < 2m,
and then normalized to the exact tree-level cross section
with its full m; dependence. The renormalization and
factorization scales have been set equal to the Higgs-boson
mass, ur = pmp = my;,. We have found a very good agree-
ment between our result for the finite inclusive cross
section for both Tevatron and LHC kinematics and several
calculations of this quantity available in the literature [1].

We now present several distributions that illustrate the
range of observables that can be studied using our compu-
tation. The numerical precision of all results shown is 1%.
We first compute the bin-integrated rapidity distribution of
the Higgs boson. We separate the entire rapidity range into
20 bins; because of the symmetry of the distribution under
Y — —Y, we need to consider only ten bins for Y = 0. The
resulting distribution is shown in Fig. 1. We have equated
the renormalization and factorization scales, up = pup =
u, and have varied them in the range m;,/2 = u < 2my,.
There are large corrections to the rapidity distribution;
however, they arise primarily from the inclusive K factor
K = onnLo/ O Lo- The rapidity dependence of the NNLO
K factor is small, and is insignificant if normalized to the
NLO distribution. This is not unexpected; the production
of the Higgs boson at the LHC is strongly dominated by the
soft z — 1 limit, which implies that the kinematics of the
tree-level process is not altered significantly by hard QCD
emissions.

In Fig. 2 we present the rapidity distribution with a veto
on jet activity, as described in [13]. We use the cone

pp~H+X

L LR B N R R R B AL R R

5 .
NNLO 1

Vs = 14 TeV

4 m, = 120 GeV

MRSTR001 pdfs

m,/2 £ u £ 2m,

NLO

o [pb]

FIG. 1 (color online). Bin-integrated rapidity distribution for
LHC kinematics. The scale w is varied between m;,/2 = u <
2my,. The LO, NLO, and NNLO distributions are shown.
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pp~H+X
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NNLO Vs = 14 TeV

m, = 150 GeV
NLO MRST2001 pdfs

M= my

o [pb]

FIG. 2 (color online). Bin-integrated rapidity distribution for
LHC kinematics, with a jet veto of | p-’ll < 40 GeV. We have set
m = my, and have included the LO, NLO, and NNLO results.

algorithm with R = 0.4, and use pY{"° =40 GeV; we
therefore demand |p’, | <40 GeV. For this result we set
my, = 150 GeV, as this cut is of particular importance for
the H — W' W~ decay channel. We show the LO, NLO,
and NNLO results; we note that the LO vetoed rapidity
distribution is identical to the inclusive LO rapidity distri-
bution, as there is no additional radiation at leading order in
perturbation theory. The K factor is much smaller for the
vetoed cross section than for the inclusive cross section;
this can easily be seen by comparing the results in Figs. 1
and 2. One reason for this is that the average p ;| of the
Higgs boson increases from NLO to NNLO; we find
(P\1O) = 37.5 GeV, while (p\N-O) =44.6 GeV. Since
the additional partons recoil against the Higgs, this is
equivalent to an increase in the average jet p’,. The in-
crease of ij. means that less of the cross section passes the
veto, leading to a larger reduction in the NNLO cross
section relative to the NLO one.

We have described a calculation of the fully differential
cross section for Higgs hadroproduction at NNLO. We
have utilized the method developed in [9] to extract and
cancel double real-radiation singularities, and have ex-
tended this approach to handle processes with initial-state
collinear singularities. Our result allows arbitrarily differ-
ential observables to be studied; as examples, we have
presented results for the Higgs rapidity distributions at
the LHC, both with and without a veto on jet activity.
This approach can easily be extended to include nonha-
dronic decays of the Higgs, or it can be applied to other
2 — 1 processes of phenomenological interest. We will
provide a detailed description of our calculation and
present a public version of our numerical code in a forth-
coming publication.
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