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We prove a powerful theorem for tripartite remote entanglement distribution protocols that establishes
an upper bound on the amount of entanglement of formation that can be created between two single-qubit
nodes of a quantum network. Our theorem also provides an operational interpretation of concurrence as a
type of entanglement capacity.
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Shared bipartite entanglement is a crucial shared re-
source for many quantum information tasks such as tele-
portation [1], entanglement swapping [1–4], and remote
state preparation (RSP) [5] that are employed in quantum
information protocols. In general, different parties, or
nodes, of a quantum network (QNet) share an entangle-
ment resource, such as ebits (maximally entangled pure
bipartite states), which are consumed during the task. In
practice, generating entangled states is expensive, but here
we establish a protocol by which a QNet requires only a
single supplier of entanglement to all nodes who, by judi-
cious measurements and classical communication, pro-
vides the nodes with a unique pairwise entangled state in-
dependent of the measurement outcome. Furthermore, we
extend this result to a chain of suppliers and nodes, which
enables an operational interpretation of concurrence [6].

In the special case that the supplier (whom we call
‘‘Sapna’’) shares bipartite states with two nodes (labeled
‘‘Alice’’ and ‘‘Bob’’), and such states are pure and maxi-
mally entangled, our protocol corresponds to entanglement
swapping. However, in the practical case that initial shared
entanglement between suppliers and nodes involves par-
tially entangled or mixed states, we show that general local
operations and classical communication (LOCC) by all
parties (suppliers and nodes) yields distributions of en-
tangled states between nodes. In general, a distribution of
bipartite entangled states between any two nodes includes
states that do not have the same entanglement (i.e., not all
the states are equivalent under LOCC between the nodes);
thus we name this general process remote entanglement
distribution (RED). In our terminology entanglement
swapping with partially entangled states [4] is a particular
class of RED protocols. Here we identify which distribu-
tions of states (shared between Alice and Bob) can or
cannot be created by RED. In particular, we prove a power-
ful theorem that establishes, for the �2� 2�-dimensional
mixed case, an upper bound on the entanglement of for-
mation that can be produced between Alice and Bob. We
extend this result to the case of a linear chain of parties that
plays the role of suppliers and nodes; this extension pro-
vides an operational interpretation of concurrence.
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Then we discuss an especially interesting class of tri-
partite RED protocols in which Alice and Bob (after LOCC
by the three parties) end up sharing a unique bipartite
entangled state, rather than a distribution of entangled
states. In this scheme, Sapna not only wishes to create
entanglement between Alice and Bob, but she also wishes
to provide Alice and Bob with a single entangled state
(which, in general, is unknown to Alice and Bob [7]).
When the initial bipartite states (shared between Sapna
and the two nodes) are partially entangled d� d pure
states, or belong to a particular nontrivial class of mixed
states, we provide a protocol for Sapna to remotely prepare
a bipartite entangled state between Alice and Bob. In this
protocol, Sapna performs a single orthogonal (von
Neumann) measurement, then transmits log2d bits of clas-
sical information to Alice and 2log2d bits to Bob. Based
solely on the classical information received from Sapna,
Alice and Bob perform local unitary operations to obtain
the state that Sapna intends them to share. Our protocol for
remote preparation of bipartite entangled states (RPBES)
works even when entanglement is insufficient for Sapna to
simply teleport qubits to Alice and Bob.

Our scheme for tripartite RED (including tripartite
RPBES) commences with a four-way shared state, �̂1234 �
�̂12 � �̂34 for �̂12 and �̂34 bipartite entangled states, and
with Sapna holding shares 2 and 3, and Alice and Bob
holding shares 1 and 4, respectively. Each share has a
d-dimensional Hilbert space. Alice, Bob, and Sapna per-
form general LOCC (allowing classical communication
among all three parties) to create outcomes O � f�̂j14 �
Tr23�̂

j
1234; Qj; j � 1; . . . ; sg with Qj the probability that

Alice and Bob share the state �̂j14, which is obtained by
reducing the four-way state �̂j1234 over Sapna’s shares.

In the case of RPBES, �̂j14 represents the state obtained
after a single measurement performed by Sapna. Then,
after Sapna broadcasts the measurement result j, Alice
and Bob each perform a single local unitary operation to
transform �̂j14 into a unique entangled state (i.e., indepen-
dent of j). This scheme for RPBES is always possible if �̂12

and �̂34 are partially entangled pure states or belong to a
particular nontrivial class of mixed states as we show.
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Let us begin by proving an important theorem that rules
out certain distributions (of bipartite states) from being
able to be created by general tripartite RED: this restriction
is obtained via a bound for the average concurrence of the
resultant distribution shared by Alice and Bob in relation to
the concurrences of the initial states Sapna has shared with
both Alice and Bob. Concurrence for a pure bipartite state

j i is C�j i� �
�������������������������
2�1� Tr�̂2

r�
p

[6,8,9] (with �r obtained by
tracing the pure-state density matrix j ih j over one of the
two shares). Concurrence for a mixed state �̂ �P
ipij iih ij is defined as the average concurrence of the

pure states of the decomposition, minimized over all
decompositions of �̂ (the convex roof): C��̂� �
min

P
ipiC�j ii�. (The concurrence for an arbitrary two-

qubit state has been calculated [6], and a concurrence
lower bound for higher dimensions has been established
[9].)

Theorem 1. If Alice, Bob, and Sapna perform general
LOCC on the initial four-qubit state �̂12 � �̂34 with out-
come fQj; �̂

j
14g, then

C14 �
Xs
j�1

QjC��̂
j
14�  C12C34; (1)

with C12 � C��̂12� and C34 � C��̂34�.
Proof. In the optimal decompositions �̂12 �P4
l�1 plj 

�l�i12h �l�j, �̂34 �
P4
l�1 qlj�

�l�i34h��l�j, we can al-
ways choose optimal decompositions such that the four
states j �l�i12 have the same concurrence C12 and all four
states j��l�i34 have the same concurrence C34 [6]. Thus,
Schmidt coefficients of the states j �l�i12 and j��l�i34 do not
depend on the index l:

j �l�i12 �
������
�0

p
j0�l�0�l�i12 �

������
�1

p
j1�l�1�l�i12;

j��l�i34 �
������
�0

p
j0�l�0�l�i34 �

������
�1

p
j1�l�1�l�i34

(2)

with �i, �i the Schmidt coefficients of j �l�i12, j��l�i34,
respectively. The index l in the states fj0�l�ii; j1�l�iig repre-
sents four different bases for each system i � 1; 2; 3; 4.
Note that in this notation C12 � 2

�����������
�0�1

p
and

C34 � 2
�����������
�0�1

p
.

Since the entanglement between Alice and Bob remains
zero unless Sapna perform a measurement, we assume that
the first measurement is performed by Sapna and is de-
scribed by the Kraus operators M̂�j� and their components
M�j;ll0�
mm0;kk0 � 23hm

�l�m0�l0�jM̂�j�jk�l�k0�l
0�i23, with k; k0; m;m0 �

0; 1 and l; l0 � 1; 2; 3; 4. The density matrix shared be-
tween Alice and Bob after outcome j occurs is

�̂ j
14 �

1

Qj
Tr23�M̂

�j�y�̂12 � �̂23M̂
�j��

�
1

Qj

X
l;l0

X
m;m0

plql0r
�j;ll0�
mm0 j�

�i;ll0�
mm0 i14h�

�i;ll0�
mm0 j; (3)
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where r�j;ll
0�

mm0 �
P
k;k0�k�k0 jM

�j;ll0�
mm0;kk0 j

2,

j��j;ll0�
mm0 i14 �

1�����������
r�j;ll

0�
mm0

q X
k;k0

������������
�k�k0

p
M�j;ll0�
mm0;kk0 jk

�l�k0�l
0�i14; (4)

and Qj �
P
l;l0;m;m0plql0r

�j;ll0�
mm0 is the probability to obtain an

outcome j. Now, a direct calculation of C�j��j;ll0�
mm0 i14� gives

C�j��i;ll0�
mm0 i14� �

2
����������������������
�0�1�0�1

p

r�j;ll
0�

mm0

jM�j;ll0�
mm0;00M

�j;ll0�
mm0;11

�M�j;ll0�
mm0;01M

�j;ll0�
mm0;10j: (5)

As the concurrence of �̂j14 cannot exceed the average
concurrence of the decomposition in Eq. (3), we have

C14 �
Xs
j�1

QjC��̂
j
14�

 2
����������������������
�0�1�0�1

p X
l;l0
plql0

X
j

X
m;m0

jM�j;ll0�
mm0;00M

�j;ll0�
mm0;11

�M�j;ll0�
mm0;01M

�j;ll0�
mm0;10j


1

4
C12C34

X
j

Tr�M̂�j�yM̂�j��; (6)

where the last inequality follows from the fact that jab�
cdj  �jaj2 � jbj2 � jcj2 � jdj2�=2 8 a; b; c; d 2 C. The
completeness relation,

P
jM̂

�j�yM̂�j� � I, implies Eq. (1).
Consider now the following LOCC: after Sapna’s first

measurement, she sends the result j to Alice and Bob.
Based on this result, Alice then performs a measurement
represented by the Kraus operators Â�k�

j and sends the result
k to Bob and Sapna. Based on the results j; k from Sapna
and Alice, Bob performs a measurement represented by the
Kraus operators B̂�n�

jk and sends the result n to Sapna. In the
last step of this scheme, Sapna performs a second mea-
surement with Kraus operators denoted by F̂�j�

jkn and sends
the result i to Alice and Bob. The final distribution of states
shared by Alice and Bob is fNjkni; �̂

jkni
14 g, where Njkni is the

probability for outcome j; k; n; i.
As the concurrence of arbitrary j i14 satisfies C�Â�k�

j �

B̂�n�
jk j i� � jDet�Â�k�

j �jjDet�B̂�n�
jk �jC�j i�, Eq. (6) yields

C14 �
X
j;k;n;i

NjkniC��̂
jkni
14 �


1

4
C12C34

X
j;k

jDet�Â�k�
j �j

X
n

jDet�B̂�n�
jk �

� j
X
i

Tr�M̂�j�yF̂�i�y
jkn F̂

�i�
jknM̂

�j��:

(7)

Moreover, from the geometric-arithmetic inequality we
have

P
njDet�B̂

�n�
jk �j 

1
2

P
nTr�B̂

�n�y
jk B̂�n�

jk � � 1 and a similar
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relation for Â�k�
j . These results, together withP

iF̂
�i�y
jkn F̂

�i�
jkn � 1, lead us back to Eq. (6). Evidently, all

operations by Alice, Bob, and Sapna after Sapna’s first
measurement cannot increase the bound on C14. �

Theorem 1 concerns one supplier and two nodes, but, in
fact, applies to one supplier and any pair of nodes; thus, the
result of Theorem 1 is applicable to an arbitrarily large
QNet with one supplier and many nodes. In fact,
Theorem 1 can be extended to more than one supplier, as
stated in the following corollary.

Corollary 1. Consider an aligned chain of N mixed
bipartite two-qubit states, �̂01; �̂12; . . . ; �̂N�1N , where the
state �̂k�1k (k � 1; 2; . . . ; N) is shared between party k� 1
and party k. If the N � 1 parties perform LOCC on the
initial state �̂01 � �̂12 � � � � � �̂N�1N with the resultant
distribution of states between party 0 and N denoted by
fPj; �̂

j
0Ng (Pj is the probability to have the state �̂j0N), then

C0N �
X
j

PjCd��̂
j
0N�  C01C12 � � �CN�1N; (8)

with Ck�1k � C��̂k�1k� (k � 1; 2; . . . ; N).
Theorem 1 and its corollary suggest an interpretation of

the concurrence as a form of entanglement capacity. Until
now concurrence has served as a powerful mathematical
tool, but here we have introduced an operational descrip-
tion of the concurrence. Furthermore, for two qubits, con-
currence is equivalent to entanglement of formation: our
theorem establishes an upper bound to the average entan-
glement of formation that the supplier can create.

In the following, we show that the equality in Eq. (1) can
always be achieved if both �̂12 and �̂34 are partially en-
tangled and pure. Saturation of the bound is also possible if
one of the states is maximally entangled and the other is
any mixed state (in which case the bound is saturated via
quantum teleportation [1]). Later we provide an example
showing that the bound saturates in some cases for one
state mixed and the other a partially entangled pure state. It
is not known, however, if saturation is always achievable.

Proposition 1. The equality in Eq. (1) can always be
achieved by RPBES if �̂12 and �̂34 are both 2� 2 bipartite
pure states. In order to prove that the equality in Eq. (1) is
achievable for pure states, we establish a protocol for
RPBES taking first �̂12 and �̂34 to be d� d pure states.
For d � 2 our protocol saturates inequality (1).

Working with partially entangled states is important
because in the nonasymptotic regime the process of con-
centration is expensive, and it is less expensive in terms of
ebits consumed (as well as classical bits [10]) to work
directly with partially entangled states [11]). The protocol
below enables Sapna to control the amount of entangle-
ment shared between Alice and Bob. In the �2�
2�-dimensional (pure) case the concurrence uniquely de-
termines the entanglement of the bipartite state. In this case
maximum concurrence corresponds to maximum possible
entanglement. However, for d > 2 (or for mixed states), the
26050
concurrence of a �d� d�-bipartite (partially) entangled
state is not sufficient to determine all the Schmidt coeffi-
cients. Thus, in this case, the optimal bipartite state that can
be prepared by Sapna is not unique. It depends on the
choice taken for the measure of entanglement; therefore,
Sapna remotely prepares entangled states according to the
tasks Alice and Bob need to perform.

The RPBES protocol.—Let the two pure densities be
expressed as �̂12 � j i12h j and �̂34 � j�i34h�j with j i12
and j�i34 states in d2-dimensional Hilbert spaces. The
initial states j i12 and j�i34 are expressed in the Schmidt
decomposition as j i12 �

Pd�1
k�0

������
�k

p
jkki12 and j�i34 �Pd�1

k�0
������
�k

p
jkki34. The steps of the protocol are as follows.

(i) Sapna performs a projective measurement P̂�j;j0� �

jP�j;j0�i23hP�j;j0�j, j; j0 � 0; 1; . . . ; d� 1,

jP�j;j0�i23 �
1

d

Xd�1

m;m0�0

ei��2$=d
2��dj�j0��dm�m0��%mm0 �jmm0i23;

(9)

with %mm0 2 R chosen freely. Note that the d2 states
jP�j;j0�i23 are orthonormal, regardless of the choice of
%mm0 . (ii) After the outcomes j; j0 have been obtained, the
system state becomes jP�j;j0�i23j�

�j;j0�i14, where

j��j;j0�i14�
Xd�1

m�0

Xd�1

m0�0

��������������
�m�m0

p
�e�i��2$=d

2��dj�j0��dm�m0��%mm0 �

�jmm0i14: (10)

(iii) Sapna sends the results j and j0 to Bob (2log2d bits of
information) and the result j0 (log2d bits of information) to
Alice. Bob then performs the unitary operation

Û �j;j0�
b jm0i4 � exp

�
i
2$

d2
�dj� j0�m0

�
jm0i4; (11)

and Alice performs the unitary operation

Û �j0�
a jmi1 � exp

�
i
2$
d
j0m

	
jmi1: (12)

(iv) The final state shared between Alice and Bob is [12]

jFi14 �
Xd�1

m�0

Xd�1

m0�0

exp��i%mm0 �
��������������
�m�m0

p
jmm0i14: (13)

For d � 2, Proposition 1 is proved by taking %mm0 �
$mm0; in this case the concurrence of jFi14 equals
4

����������������������
�0�1�0�1

p
� C12C34, which is optimal (see

Theorem 1). Moreover, if Alice and Bob know the state
prepared by Sapna, they can perform local unitaries to
obtain any state with the same concurrence. Thus, any �2�
2�-dimensional bipartite pure state with concurrence not
greater than C12C34 can be prepared by Alice, Bob, and
Sapna performing LOCC.

For d > 2, if all �m and �m0 in Eq. (13) are equal to 1=d,
then the choice %mm0 � 2$mm0=d gives a maximally en-
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tangled state. For different �m and �m0 , the optimal bipar-
tite state that can be prepared by Sapna depends on the
particular entanglement measure. For example, the con-
currence of the �d� d� bipartite state in Eq. (13) is

C�jFi14� � 2

X
k>k0

X
m>m0

�k�k0�m�m0 jei�%km�%k0m0 �

� ei�%km0�%k0m�j2
�
1=2
: (14)

Unlike the 2� 2 case, for d > 2 the term with the absolute
value in Eq. (14) cannot equal 2 for all k; k0; m;m0. Thus,
the values of %km that maximize C�jFi14� depend explicitly
on the Schmidt coefficients �k and �m.

Our protocol can be applied for mixed states. In general,
for mixed states �̂12 and �̂34, our protocol provides Alice
and Bob with a distribution of mixed states rather then a
unique state. As (for RPBES) Sapna wishes to produce a
unique state �̂14, we establish a class of mixed bipartite
states �̂12 and �̂34 where our protocol yields a unique state.
We then provide a specific �2� 2�-dimensional example,
which we show is optimal (maximum possible concurrence
for the state shared by Alice and Bob).

The two initial �d� d� bipartite density matrices are
�̂12 �

Pn
l�1 plj 

�l�i12h �l�j, �̂34 �
Pn0
l0�1 ql0 j�

�l0�i34h��l0�j,

with n; n0  d, and j �l�i12 �
Pd�1
k�0 a

�l�
k jkki12, j��l0�i34 �Pd�1

k0�0 b
�l0�
k0 jk

0k0i34, with ak; bk0 2 C and basis states jkii
independent of l and l0; this characterizes the class con-
taining �̂12 and �̂34.

Now, it can be shown that, after Sapna performs her
measurement, and Bob and Alice perform the unitary
operations of Eqs. (11) and (12), the resultant shared state
is

�̂ 14 �
Xn
l�1

Xn0
l0�1

plql0 j�
�ll0�i14h�

�ll0�j; (15)

with j��ll0�i14 �
Pd�1
k�0

Pd�1
k0�0 a

�l�
k b

�l0�
k0 e

�i%kk0 jkk0i14.
We conclude with a simple interesting example.

Suppose Alice shares with Bob the �2� 2�-dimensional
pure state j i12 �

������
�0

p
j00i12 �

������
�1

p
j11i12 and Sapna

shares with Bob the �2� 2�-dimensional mixed state
�̂34 � qj����i34h����j � �1� q�j����i34h����j, where 0 

q  1 and j����i34 � �1=
���
2

p
��j00i34 � j11i34�. The con-

currence of j i12 is 2
�����������
�0�1

p
and the concurrence of �̂34

is equal to j2q� 1j [6]. It is easy to see that both j i12 and
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�̂34 belong to the class of density matrices described above.
In this example, it is possible to calculate the concurrence
of the final mixed state �̂14 given in Eq. (15): C14 � j2q�
1j

�����������
�0�1

p
jei�%00�%11� � ei�%01�%10�j. For %kk0 � $kk0, k; k0 �

0; 1, we obtain C14 � C12C34: the bound in Theorem 1 is
saturated. The protocol is optimal in this example, and Bob
can prepare the bipartite state �̂14 with any concurrence
between 0 and C12C34.

In summary, we have introduced a protocol for a QNet
that allows a single supplier, who first shares entanglement
with all nodes of the QNet (which may be partially en-
tangled pure states or a particular class of mixed states), to
provide any pair of nodes in the QNet with a single
bipartite entangled state. We have also proved a powerful
theorem for tripartite RED protocols that establishes an
upper bound on the amount of entanglement of formation
that can be created between two single-qubit nodes of the
QNet. We have also proven that it is possible (in some
cases) to saturate the concurrence bound in the theorem if
one state is pure (even if it is partially entangled), and the
other is mixed. Our theorem provides an operational inter-
pretation of concurrence as an entanglement capacity.
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