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Effect of Dephasing on the Current Statistics of Mesoscopic Devices
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We investigate the effects of dephasing on the current statistics of mesoscopic conductors with a
recently developed statistical model, focusing, in particular, on mesoscopic cavities and Aharonov-Bohm
rings. For such devices, we analyze the influence of an arbitrary degree of decoherence on the cumulants
of the current. We recover known results for the limiting cases of fully coherent and totally incoherent
transport and are able to obtain detailed information on the intermediate regime of partial coherence for a
varying number of open channels. We show that dephasing affects the average current, shot noise, and
higher order cumulants in a quantitatively and qualitatively similar way, and that consequently shot noise
or higher order cumulants of the current do not provide information on decoherence additional or
complementary to what can be already obtained from the average current.
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Current fluctuations in mesoscopic devices are due to the
randomness of electron transfer [1] and provide detailed
information of the underlying transport mechanisms. From
shot noise measurements, the distribution functions of
open and closed transmission channels in mesoscopic
samples like disordered wires [2] and the noninteger
charge of quasiparticles [3] are extracted. Such information
is not available from conductance measurements and there-
fore a more complete description of the transport mecha-
nisms can be obtained only by computing the full-counting
statistics of the current [4], which comprises the cumulants
of all orders. Recently, the possibility to explore additional
transport features on cumulants of order higher than the
second has been experimentally achieved [5].

A highly debated point in these years is whether addi-
tional precious information on the degree of decoherence
of a system can be extracted from measurements of shot
noise or of higher order cumulants of the current. Several
works have addressed this controversial issue in different
structures such as electronic Mach-Zehnder interferome-
ters [6–8], chaotic cavities [9], and resonant tunneling
diodes [10–13].

Indeed, transport in mesoscopic devices is often based
on the coherent evolution of the wave function and is
therefore very sensible to decoherence caused by the in-
teraction between carriers and the environment [14] that
reduces the degree of predictability of system evolution.
Hence, the operation of many mesoscopic devices, espe-
cially those based on quantum interference, can be under-
mined even by a small degree of decoherence. The degree
of coherence of transport is typically described by a unique
synthetic parameter, the dephasing length L�, i.e., the
characteristic distance over which phase memory is lost.
This fundamental physical quantity can be experimentally
obtained from conductance measurements on a few suit-
able devices, such as, for example, Aharonov-Bohm (AB)
rings [15].
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The aim of this Letter is to explore the influence of
dephasing on shot noise and on higher order cumulants
of the current in mesoscopic systems like ‘‘so-called’’
chaotic cavities and AB rings, in order to verify which
cumulants can be conveniently used to gain insight into the
degree of coherence of transport.

We adopt a recently developed model [16] that exploits
the statistical nature of the dephasing process and has been
recently used to investigate magnetoconductance of such
structures as a function of the degree of coherence. The
method allows us to introduce an arbitrary degree of de-
phasing in the system and to compute all cumulants of the
current, and therefore to investigate their dependence on
the dephasing length. We can anticipate that even for a
small number of propagating modes, when the correspon-
dence principle cannot be invoked, essentially all informa-
tion on dephasing can be obtained from conductance
properties.

Let us highlight the fact that, from the modeling point of
view, researchers typically have to simplify the transport
model of a mesoscopic conductor, reducing it to the limit
of complete coherence, or to the opposite limit of incoher-
ent transport using a semiclassical model, which intrinsi-
cally rules out interference effects. Rather intuitively, when
the Fermi wavelength �F approaches zero or the number of
conducting channels Nc is large, approaches based on
completely coherent transport should provide the same
result as semiclassical approaches, due to the correspon-
dence principle. In such cases, we can expect that the phase
coherence of carriers is irrelevant. As far as shot noise is
concerned, for Nc � 1, such behavior is well known, for
example, for the so-called 1=3 suppression of shot noise in
diffusive conductors, which has been obtained both with a
quantum mechanical description, such as that based on
random matrix theory (RMT) [17], or with statistical simu-
lations [18], and in semiclassical terms, using the
Boltzmann-Langevin equation [19]. A similar agreement
3-1  2004 The American Physical Society
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FIG. 1 (color online). Cumulants hhnkii for the cavity shown in
the inset for k � 1; 2; 3; 4, when the Fermi energy allows Nc � 9
conducting modes in the leads. The two curves correspond to
the cases of L� � 0:1 �m (incoherent transport) and L� �

1000 �m (coherent transport). For k � 2; 3; 4 the cumulants
are normalized to hhnii. The first order cumulant is normalized
to Nc. The diameter of the circular cavity is 1:5 �m and the lead
width is 50 nm.
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has been obtained for the so-called 1=4 suppression of shot
noise in chaotic cavities [20,21]. However, shot noise and
higher order cumulants of the current in the intermediate
regime between fully coherent and incoherent transport
have not been determined, leaving unsolved the question
of whether they are dependent on the dephasing length.

Ballistic transport in mesoscopic structures is described
within the framework of the Landauer-Büttiker theory
[22], which does not allow to include directly the effects
of dephasing. Such effects are usually treated with phe-
nomenological models, which are based on the insertion of
a virtual voltage probe [23] into the ballistic region: elec-
trons traveling from source to drain can be absorbed by a
third probe, where they lose their phase information and
then are reinjected into the conductor.

An alternative phenomenological model which de-
scribes decoherence as a phase randomizing statistical
process has been recently proposed and implemented
with a Monte Carlo method by the authors [16]. Such
method treats decoherence as a random fluctuation of the
phase of the propagating modes involved in the computa-
tion of the scattering matrix (S matrix), and enables us the
obtain cumulants of the current from Monte Carlo simula-
tions over a sufficiently large ensemble of runs [24].

Current fluctuations in the leads are related to the num-
ber of particles n that traverse the devices during the
observation time t. For example, the first cumulant hhnii �
hIit=e gives the mean current hIi (e is the absolute value of
the electron charge). The second cumulant hhn2ii � St=2e2

gives the shot noise power spectral density S. Conse-
quently, the Fano factor F, defined as the ratio of S to the
power spectral density of a Poissonian process 2eI can be
written as the ratio of the second to the first cumulant:
F � hhn2ii=hhnii.

From a numerical point of view, the transmission matrix
is computed by dividing the domain in Nx slices, then by
calculating the scattering matrix si for each slice, and by
finally composing all the partial S matrices with the ap-
propriate rules [25] in order to obtain the complete S
matrix of the conductor sT � s1 � s2 � � � � � sNx�1. We
include dephasing as a statistical process by adding a
random term to the phase accumulated by each propagat-
ing mode in each slice. Average quantities are obtained
performing simulations on a sufficiently large ensemble of
runs (of the order of hundreds). The random term added to
each mode of the ith slice obeys a Gaussian probability
distribution of zero average and variance �2

i determined by
the length of the slice �xi and by the dephasing length L�

as �2
i � �xi=L�. By varying L� we are able to explore the

complete range of transport regimes, from completely
coherent to completely incoherent.

We consider systems of noninteracting electrons at zero
temperature, and all aspects can be expressed in terms of
the eigenvalues Tn of the transmission matrix T � tyt.
Indeed, the kth order cumulants hhnkii (k is a nonzero
integer) of the number of transmitted particles are defined
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as the coefficients of the series expansion of the logarithm
of the characteristic function �	�
 [1]

ln�	�
 �
X
k

	i�
k

k!
hhnkii: (1)

Because of the microscopic mechanism of transport, the
probability to have m transmitted electrons through a
generic channel is given by the binomial distribution Pm �
Cm
NT

m	1� T
N�m, where N is the average number of
electrons that attempt to traverse the device [26,27]. The
characteristic function is given by �	�
 �P

mPm exp	im�
 � �T exp	i�
 � 1� T
N , which in the
case of several independent channels reads

�	�
 �
Y
j

�Tj exp	i�
 � 1� Tj

N; (2)

where the product is performed over all transmission chan-
nels in the conductor. From Eq. (2) we can obtain the
following expression for the cumulant of order k [27]:

hhnkii � N
X
j

�
T	1� T


d
dT

�
k�1

TjT�Tj
: (3)

As a first case, we focus on a so-called ‘‘chaotic’’ cavity,
whose structure is shown in the inset of Fig. 1, and con-
sisting of a circular cavity with diameter of 1:5 �m and
lead width of 50 nm. We consider the material properties of
GaAs. The dwell time of electrons is large enough to
provide the one fourth suppression of shot noise expected
for such a structure [28]. This condition is sufficient to
consider negligible the trajectories responsible of back
reflection into the lead.

We explore the dependence of the transport properties of
the chaotic cavity on the strength of the decoherence
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mechanism. We consider first the two limiting cases of
L� � 10�1 �m, which is much smaller than the sample
size and therefore corresponds to an almost fully incoher-
ent regime, and of L� � 103 �m, which is much larger
than the length of the classical path covered by the elec-
trons inside the cavity, and therefore corresponds to coher-
ent transport. In Fig. 1 we show that first four cumulants for
Nc � 9, obtained from Eq. (3), are almost identical in the
two cases. The total conductance is half the conductance of
a single constriction, and the Fano factor is 1=4 in both
cases.

The fact that quantum coherence does not influence the
transport properties for a large number of conducting
channels in the structure is simply consistent with the
correspondence principle. Hence, we investigated the de-
pendence of the second and of the fourth cumulant on the
dephasing strength for a smaller number of conducting
channels in the leads.

In Figs. 2 and 3 results are shown for Nc � 1; 3; 4; 5; 9
propagating modes in the leads and a much larger number
of corresponding open channels in the cavity. In such
figures we have plotted the first cumulant of the current
hhnii=Nc, together with the normalized second cumulant
 0.4

 0.5

 0.6

 0.7 0.4

 0.3

 0.2

 0.1

 0.15

 0.25

 0.35

 0.45

 0.4

 0.5

 0.6

 0.7

 0.8

 0.1  1  10  100  1000

L   (  m)µφ

 0.2

 0.3

 0.4

 0.4

 0.5

 0.2

 0.3

 0.4

 0.4

 0.5

 0.25

 0.35

 0.45

 0.4

 0.5

 0.6

9 modes

3 modes

1 mode

se
co

n
d

 c
u

m
u

la
n

t

fi
rs

t 
cu

m
u

la
n

t

4 modes

5 modes

FIG. 2 (color online). Normalized second cumulant
hhn2ii=hhnii or Fano factor (solid line) of the quantum dot shown
in Fig. 1 compared with the normalized first cumulant hhnii=Nc
(dashed line) as a function of the dephasing length L�. From the
bottom to the top the Fermi energy allows the conduction of 1, 3,
4, 5, and 9 modes. The error bars in the plot are �2sm, where sm
is the standard deviation of the sample average.
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hhn2ii=hhnii and the normalized fourth cumulant
hhn4ii=hhnii as a function of L�.

The figures show very clearly that both the second and
fourth order cumulants are largely independent of the
dephasing length, within the range of the error bars due
to the finite ensembles considered. In the case of large Nc,
the theoretical values of both hhn2ii=hhnii � 1=4 and
hhn4ii=hhnii � �1=32 are recovered.

In addition, for small Nc, whenever a modulation of the
values of the second or fourth order cumulants can be
observed as a function of L�, a corresponding modulation
with comparable or larger amplitude can be observed in the
first cumulant. In our view, this is a demonstration that
higher order cumulants do not provide additional informa-
tion on dephasing with respect to that already provided by
conductance. Even in the case of single mode transmission
in the lead, different cumulants are altered by the degree of
coherence essentially in the same way.

The second device we consider is an Aharonov-Bohm
ring that exhibits very regular magnetoconductance oscil-
lations due to quantum interference, and is therefore very
sensitive to the effects of decoherence. In Fig. 4 we show
simulation results for the Fano factor of an Aharonov-
Bohm ring for the cases corresponding to two values of a
perpendicular magnetic field corresponding to a maximum
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FIG. 3 (color online). Normalized fourth cumulant hhn4ii=hhnii
(solid line) compared with normalized first cumulant hhnii=Nc
(dashed line) of the cavity shown in Fig. 1 as a function of the
dephasing length L�. From the bottom to the top the Fermi
energy allows the conduction of 1, 3, 4, 5, and 9 modes,
respectively.
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FIG. 4 (color online). Normalized second cumulant or Fano
factor (black solid line) of the AB ring as a function of the
dephasing length compared with the normalized first cumulant
hhnii=N (blue dashed line). From the top to the bottom we sketch
the cases corresponding to 	Nc � 9; B � 0:032 T
, 	Nc � 9;
B � 0:016 T
, 	Nc � 1; B � 0:032 T
, and 	Nc � 1; B �
0:016 T
. The two values of the magnetic field are such that
the magnetoconductance presents a maximum (for B � 0:016 T)
and a minimum (B � 0:032 T) in the AB oscillations. The
device is obtained from the cavity sketched in Fig. 1 by inserting
a central antidot with diameter of 0:9 �m (not shown).
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(B � 0:016 T) and a minimum (B � 0:032 T) of magneto-
conductance. As can be seen, for the two limiting cases of a
small (Nc � 1) and a large (Nc � 9) number of conducting
channels, the Fano factor depends on the dephasing length
L� in the same way as the conductance, and therefore does
not provide additional insights on decoherence.

In this work we have investigated the influence of de-
phasing on the transport properties of mesoscopic struc-
tures in order to evaluate the possibility to achieve
information on the degree of decoherence from shot noise
properties or from higher order cumulants of the current.
We have used a recently developed statistical model to
include a distributed arbitrary level of dephasing in the
device. We have focused on two types of structures with a
varying number of propagating channels that we believe to
be representative of the broad class of mesoscopic devices.
Our conclusion is that no additional information on the
degree of dephasing is to be expected with respect to that
already provided by the conductance.
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Network of Excellence (EU Contract No. 506844) is grate-
fully acknowledged.
25680
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