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Brownian Dynamics in Fourier Space: Membrane Simulations over Long Length and Time Scales
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A simulation algorithm for elastic membrane sheets is presented. Overdamped stochastic dynamics
including hydrodynamic coupling to surrounding solvent and arbitrary external forces are generated by
employing Fourier modes of the sheet as the primary dynamic variables. Simulations over the micron
length scale and second time scale are easily achieved. The dynamics of a lipid bilayer attached to an
underlying network of cytoskeletal filaments is used to estimate the diffusion constant of membrane-

bound proteins on the surface of the red blood cell.
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Many interesting phenomena in cellular biology and
membrane biophysics involve size and time regimes inac-
cessible to fully atomic simulations. Simplified models
represent our only hope to study such systems theoreti-
cally. Analytical progress has been made for studying the
dynamics of continuous elastic membranes, but only for
interactions that are harmonic in nature within relatively
simple geometries [1-3]. Dynamic simulations involving
more elaborate harmonic models have been pursued [4],
but neglect hydrodynamic effects and thermal fluctuations.
Monte Carlo simulations have also successfully treated
general nonharmonic potentials [5,6], but yield only
time-independent information. In this Letter, we present
an efficient membrane simulation technique that accounts
for both hydrodynamics and thermal fluctuations in the
presence of arbitrary potentials. To our knowledge, this
method is the first with such capabilities. Using the tech-
niques developed, we model bilayer fluctuations on the
surface of the red blood cell at the micron scale over
seconds in time. The algorithm we present provides a
potential means for simulating a large class of problems
in membrane biophysics.

Our starting point is the elastic energy for a tensionless
fluid quasiplanar sheet [7,8] with external perturbations

n= | dr{% [Vh()P + H im[h(rﬂ}, (1)

where K, is the bending modulus, A = L2 is the pro-
jected membrane area, r = (x, y) is the position in the xy
plane, and A(r) specifies the height of the membrane above
the reference plane at h(r) = 0. The interaction term
H ,[h(r)] allows for arbitrary interactions between the
membrane and its surroundings. Although we consider
tensionless systems here, the equations are easily general-
izable by adding a surface tension term. Equation (1) is
expected to hold down to wavelengths of ~3—-6 nm [9].
Finer resolution would require a more microscopic
approach.

Stochastic dynamics appropriate to the low Reynolds
number regime and small out-of-plane fluctuations are
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described by a nonlocal Langevin equation in an infinitely
periodic geometry (period £ in x and y) [10]
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where A(r — r’) = 1/87rm|r — r'| is the diagonal portion
of the Oseen tensor, 7 is the viscosity of the surrounding
fluid, F(r,t) = —6H/8h(r,t) and {(r,¢) is a Gaussian
white noise satisfying the fluctuation-dissipation relation
[11]. These equations completely specify dynamics for the
lipid bilayer.

Simple harmonic forms for HH ;,[(r)]in Eq. (1) lead to
models that may be pursued analytically [1,2], while com-
plex harmonic interactions require numerics to identify the
normal modes [3]. In either case, exact dynamics are
attainable for arbitrary time steps. In the case of more
general potentials, numerical simulation over sufficiently
small time steps provides the only viable means to study
the dynamics described above. Introduction of a general
dynamics algorithm is the focus of this letter. To begin, we
note that the convolution over the nonlocal hydrodynamic
interaction is most efficiently handled in Fourier space

%t(f) = AW{Fh(r, 0]+ G0}, 3)

where the Fourier transforms are defined by hy =
[adrh(r)e”™ T and  h(r) = L7723 hye™T, Ay =
1/4n9k, and (i (r) now obeys ((1)) =0 and
(L) G (1)) = 2kgT L2AL 'Sy 4 8(t — 1) For general
potentials, Fy is a functional of the height field of the
membrane and is dependent upon the entire set of ampli-
tudes hy; Eq. (3) describes a set of coupled equations.
Wave vectors are limited to values commensurate with
the periodicity of the system so that k = (m, n)27/ L
and a short wavelength cutoff is imposed to confine
—N/2 <m, n = N/2, corresponding to discretization in
the (x, y) plane by € = L/N.

The divergence of Ay _ is a nonphysical consequence of
our periodic boundary conditions. The problem becomes
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irrelevant in systems where it is appropriate to fix the
center of mass so that it cannot move (A, = 0). For sys-
tems where we require center of mass motion, we take
Ay = 3.L/87n reflecting diffusion of a membrane patch of
area A [3]. Although we use this value in several of our
simulations, it was verified that none of the results depend
on this choice.

A simulation algorithm based on Eq. (3) follows from
the principles of Brownian dynamics [12] with slight mod-
ifications. The equations of motion are integrated from ¢ to
t + At for small At

1+
t

At
R(AD) = Ay [ dr' 4 (1),

and the real and imaginary components of Ry (A7) are
drawn from Gaussian distributions of appropriate width.
However, the Fourier modes obey the relation iy = h_j
since h(r) is a real quantity. As a result, the real and
imaginary parts of the amplitudes Ay are not completely
independent and only half of the equations implied by
Eq. (4) are evolved in time. The modes given by (m, n) =
(0,0), (N/2,0), (0, N/2), and (N/2, N/2) are completely
real and comprise four independent dynamic variables for
the system. We choose the other independent modes to be
(m,n) for —=N/2<m<N/2and 0 <n < N/2, (m,0) for
0<m<N/2, (mN/2) for 0<m <N/2, and (N/2, n)
for 0 < n < N/2. The real and imaginary parts of each of
these modes comprise additional independent dynamic
variables. The remaining modes are related by complex
conjugation to these independent modes.

The considerations above also apply to the random
force {x = fx + igx. The fluctuation-dissipation rela-
tion for the purely real components is (fy(1)fx (1) =
2kgTL2A'5(t — ') while the remaining indepen-
dent components exhibit {(f} (¢)fx (1)) = (g (D) gk (1)) =
kgT L2\ '8(t — ). Cross correlations between the am-
plitudes f} and gy are all zero. Correspondingly, Ry (A?) is
drawn from a Gaussian distribution with zero mean and
variance 2 L2kzT Ay At for the explicitly real modes and
the real and imaginary parts of Ry (A7) are drawn from a
Gaussian distribution with zero mean and variance
L?kpT A At for the remaining independent modes.

Simulations proceed from some initial configuration for
the sheet [typically A(r) = 0] and evolve forward in time
on the basis of Eq. (4). Explicitly, a single time step in the
simulation algorithm consists of four parts: (1) Evaluate
the interaction part of the forces Fi,(r) = —8H;,/dh(r)
in position space. (2) Compute the bending forces Fend =
— K k*hy and evaluate the interaction force Fi by Fourier
transforming the result of the previous step. (3) Draw
Ry (At)’s from the appropriate Gaussian distributions. (4)
Compute hy (r + At) using Eq. (4). Inverse Fourier trans-
formation yields h(r) for use in the next iteration. Of

course, At must be chosen small enough to ensure con-
vergence. From this point forward, we refer to this algo-
rithm as Fourier space Brownian dynamics (FSBD) [13].

We demonstrate the stability of FSBD by comparing
with known results for systems whose equations of motion
can be solved analytically. The simplest case is that of the
free membrane for which ;,, = 0. The exact result for
the height correlation function is [10]

wonoy X 5)
2 IR
(h?) 2k

where the relaxation frequencies are wy, = K.k>/4n. A
comparison between simulation and exact results is shown
in Fig. 1.

A more interesting case for which results can be ob-
tained semianalytically is that of a membrane harmonically
pinned by a localized potential

H ()] = %hz(r)Z exp{—(r ;/f")z}, (©)

where € = L/N and v is sufficiently large that the height
is essentially zero near the pinning sites R; labeled by the
index i. We study the case where the membrane is pinned at
a single site R = 0 (and therefore all four corners by the
periodic boundary conditions). Exact results for the auto-
correlation function, taken from Ref. [3], are compared to
FSBD simulation in Fig. 1.

As a validation of FSBD outside the harmonic regime,
we compare equilibrium properties for a membrane con-
fined between two walls located at *+a to Monte Carlo data

% FSBD (Free)
0.9 o FSBD (Pinned, x=14 nm)
A FSBD (Pinned, x=7 nm)
0.8 — Exact

(h(Oh(0) /()

0 5 10 15 20 25
t(us)

FIG. 1. Plot of the normalized height autocorrelation function
for a free membrane and a membrane pinned at the corners of a
square £ = 112nm, € = 7 nm, and N = 16. All plots are for
y=0, At=1ns, Ay =0, and a total simulation time of ¢ =
0.1 s. The values used for the physical parameters are K. =
2X 10" B ergs, n = 0.06 P, and T = 310 K, and the value of
the pinning constant for the pinned system is y =2X
10" ergscm™*. The magnitude of deviation from the exact an-
swers is consistent with standard statistical error estimates [23].
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previously reported for the same system [5]. The form of
the interaction potential, intended to mimic that of a stack
of membranes, is

H yalh(] = S {VIa + ] + Via = hOl ()

where V(z) = Adexp(—z/A) — H/127z%, and A, H, and
A are constants. The quantities computed by Gouliaev and

Nagle [5] are the root mean square displacement o =

/(h?) and the pressure P that the membrane exerts on the
walls. A comparison between Monte Carlo and FSBD
results are reported in Table 1. Within statistical error, the
results of the two methods are identical.

We now focus on a biophysical problem requiring an-
harmonic dynamic membrane simulations over long length
and time scales. The mobility of band 3 protein on the red
blood cell surface has been closely scrutinized [14,15] and
is known to be influenced by interactions between band 3
and the spectrin cytoskeletal network attached to the mem-
brane surface [14]. The spectrin network forms a series of
~100 nm diameter corrals on the cell surface which hinder
the diffusive behavior of proteins [14,15]. On short length
scales D = 0.53 um?s~! [15], reflecting unhindered dif-
fusion within a single corral. The protein protrudes a
distance, h, into the cell and this intracellular domain
clashes with cytoskeletal filaments leading to a large de-
crease in diffusivity Do = 6.6 X 1073 um?s™! [15]
over cellular length scales. Given the strong confining
influence of the cytoskeleton, it is somewhat remarkable
that band 3 does manage to explore the entire cell surface.
The exact mechanism leading to corral hopping events
remains poorly understood.

Many previous studies have focused on dynamic rear-
rangements of the cytoskeleton as a possible mechanism
leading to band 3 escape from individual corrals [14—18].
Recently, we suggested thermal fluctuations of the bilayer
itself as a potential means to promote corral hopping events
[3]. Here we again focus our attention on bilayer fluctua-
tions (we assume the cytoskeleton is static), but improve
upon previous work by including a more realistic interac-

TABLE 1.

tion between the cytoskeleton and the membrane. The
bilayer is both pinned to the cytoskeleton at discrete points
and repelled by the filaments between pinning sites. FSBD
makes such a simulation possible whereas the harmonic
dynamics scheme introduced previously [3] is unable to
account for filament-membrane repulsion.

We approximate repulsive interactions between the
membrane and spectrin cytoskeleton as a short-range hy-
dration interaction of the form [19]

x4+ by + N2
H oy = €3 e " exp| ~(TEEEN L @

where a;x + b;y + ¢; = 0 specifies a particular finite lin-
ear segment of spectrin between pinning sites. Pinning of
the membrane to spectrin at the ends of these segments is
accomplished via harmonic interactions as in Eq. (6). We
choose A = 0.2 nm [20], € = kzT/100¢>, and y = 2X
10'* ergs cm™*, ensuring strong pinning (increasing y does
not affect results) and a steeply rising hydration potential
that effectively prevents A(r) < 0 above spectrin filaments.
The values for the physical parameters of the red blood cell
are K, =2X 10" ergs, n=0.06P, hy =6nm, T =
310K, ¢ = 7nmand L = 112 nm (see Ref. [3], and refer-
ences therein). Figure 2 displays the geometry of our
simulations. Multiple L X L corrals are simulated within
a larger periodic box of edge size L. For system sizes £ =
4L we find no dependence of reported results on A and all
results are reported in this converged limit.

Our model of protein diffusion closely follows that de-
scribed in Ref. [3]; readers are directed there for a full dis-
cussion. We treat the height of membrane at the corral peri-
phery as a dynamic gating mechanism. The height of the
membrane must exceed 4 for long enough to allow diffu-
sion over the spectrin barrier. Within this picture we find
that the addition of repulsive interactions between the cyto-
skeleton and membrane translates into a twofold lowering
of the calculated diffusion constant D, = (3.44 *
0.11) X 1072 um?s~! relative to the value obtained in
the absence of repulsive interactions (Dueo = 7.0 X
1072 um?s~! [3]). In the more realistic triangular ge-

Comparison of Monte Carlo data [5] with those from FSBD for a membrane confined between two walls. See the text for

details and definitions. A time step of Az = 0.05 ns was used and the total time of each simulation was ¢ = 10 ms. The results for
FSBD reflect averaging over significantly more independent samples than the results for Monte Carlo.

N L(A) a(A) (MO) o(A) (FSBD) P(ergs/cm?)(MC) P(ergs/cm?) (FSBD)
A=10%ergs/cm® H =0,K, = 1072 ergs, A = 1.8 A, T =323 K, a =20A
4 700 4.0774 = 0.0018 4.076 89 = 0.000 99 123010 = 170 122950 = 80
700 4.3366 + 0.0013 4.33609 = 0.000 63 173470 = 170 173530 = 80
16 700 4.3792 + 0.0034 4.38107 = 0.000 54 193 800 = 600 194 130 = 80
A =10%ergs/cm? H =3 X 10" ergs, K. = 107 B ergs, A\ = 1.4 A T=323K a=17 A
4 350 6.0902 = 0.0027 6.08605 = 0.001 08 28 000 = 900 26700 = 310
8 700 6.1225 = 0.0030 6.11984 + 0.00053 38500 = 1000 37550 = 150
16 1400 6.1270 = 0.0026 6.12994 = 0.00027 40000 = 600 40930 = 80
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FIG. 2 (color online). Snapshot of a red blood cell membrane
evolved with FSBD for £ = 3L using the physical parameters in
the text. The spheres indicate where the membrane is pinned to
spectrin filaments (represented as dark lines). At the edges of the
corrals, the membrane must lie above the plane due to repulsive
interaction with the cytoskeleton. The z axis is expanded to
emphasize membrane undulations.

ometry of Ref. [3] we find D, = (2.06 £ 0.13) X
1072 um?s™ ! (Dpaero = 6.6 X 1072 wm? s~ ! with repul-
sions off [3]), approximately 3 times larger than observed
experimentally.

The addition of repulsive interactions decreases the
macroscopic diffusion constant by a geometry dependent
factor (1/2 for squares, 1/3 for triangles). This is unex-
pected since repulsions push the membrane above the
cytoskeleton and increase the prevalence of h, sized
gaps. However, the regular network of repulsive filaments
effectively quenches modes of wavelength ~2L that are
present in the absence of repulsion. The remaining modes
fluctuate faster than those at longer wavelength; the gaps
that do open are apt to close more quickly in the presence
of repulsions. This effect accounts for the lowered diffu-
sion constants. Our results indicate that membrane undu-
lations are likely to contribute to the observed diffusion on
the surface of the red blood cell. We have voiced this
conclusion previously [3], however, the realism of the
model enabled by the FSBD approach makes the present
study more convincing and the mechanism has been sub-
stantially altered. Our study has focused entirely on bilayer
fluctuations with complete neglect of cytoskeletal motion.
In light of this and the experimental uncertainty present in
physical parameters we have adopted, the D, values we
calculate are not expected to be quantitatively correct.
Rather, the qualitative implication that membrane undula-
tions should play a role in the diffusive process is the
conclusion of this study.

Many processes in biology and membrane biophysics
are completely inaccessible to atomistic simulations and
the general mesoscopic approach afforded by FSBD should
prove invaluable in a number of areas. Problems of cyto-
skeletal growth at membrane surfaces [21] and the fluctua-
tions observed in “active’” membranes [22] and membrane
stacks [5] represent just a few examples of problems
potentially amenable to such an approach. Future applica-
tions for FSBD extend far beyond the single example
pursued here.
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