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Anomalous Scaling at the Quantum Critical Point in Itinerant Antiferromagnets
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We show that the Hertz �4 theory of quantum criticality is incomplete as it misses anomalous
nonlocal contributions to the interaction vertices. For antiferromagnetic quantum transitions, we found
that the theory is renormalizable only if the dynamical exponent z � 2. The upper critical dimension is
still d � 4� z � 2; however, the number of marginal vertices at d � 2 is infinite. As a result, the
theory has a finite anomalous exponent already at the upper critical dimension. We show that for d < 2
the Gaussian fixed point splits into two non-Gaussian fixed points. For both fixed points, the dynamical
exponent remains z � 2.
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FIG. 1 (color online). The schematic phase diagram for quan-
tum phase transition.
Quantum phase transitions (QPT) at zero temperature
are currently the subject of intensive experimental and
theoretical study. These transitions occur in a number of
itinerant fermionic systems under the change of pressure,
doping, magnetic field, or some other external parameter.
QPT are very different from finite temperature phase
transitions, as the dynamics of the order parameter field
can be neglected at finite T but cannot be neglected at T�
0. The conventional phase diagram in the �x; T� plane,
where x is the external parameter, has three distinctive
areas (see Fig. 1). The ordered phase (for most cases,
antiferromagnetic) is to the left of the quantum critical
point (QCP), the disordered, paramagnetic Fermi liquid
phase is to the right, and right above the QCP there is a
quantum critical regime that we will study. The system
properties in this regime are governed by the quantum
dynamics of slow fluctuations of the order parameter [1].

In his original approach to quantum criticality for itin-
erant fermions, Hertz [2] considered the coupling be-
tween fermions and the low-energy bosonic field which
condenses at the QCP. He integrated out fast fermions and
obtained an effective theory for the slow bosonic degrees
of freedom, which, he argued, is the Landau-Ginsburg-
Wilson (LGW) �4 theory with the upper critical dimen-
sion dcr � 4� z, where z is the dynamical exponent. At
d � dcr the �4 vertex is marginal, above dcr it is irrele-
vant, and for d < dcr it is relevant. Higher order �6, etc.,
vertices are all irrelevant near dcr. This theory was later
extended by Millis [3] and others [4] to explain the finite
temperature properties of metals in the vicinity of the
QCP.

In recent years, the applicability of Hertz-Millis theory
to quantum phase transitions in heavy fermion metals has
been questioned. The theory seems to work in some
systems but not in others (see, e.g., [5]). It has been
suggested that this inconsistency may be due to the fact
that QPT in some heavy fermion materials require two-
band description and may be accompanied by the discon-
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tinuous change of the area of the Fermi surface [6]. This
phenomenon is not included in Hertz theory, which de-
scribes one-band itinerant models.

In this Letter, we consider QPT for which one-band
description is valid, and the Fermi surface changes con-
tinuously through the transition. We show that even for
these transitions Hertz’s theory is incomplete. Specifi-
cally, we argue that upon integrating out fermions, the
effective bosonic theory becomes nonlocal. We show that
only the theory with z � 2 is renormalizable. For d >
dcr � 2 all interaction terms are irrelevant, and the fixed
point is just Gaussian. However, for z � 2 and d � 2,
there is an infinite number of marginal terms in the
effective action. For d < 2, the Gaussian fixed point splits
into two new fixed points, one stable and one unstable.
The scaling dimensions for different components of the
momentum are different for these new fixed points, and
for both of them the dynamical exponent z measured in
units of the most relevant component of the momentum
equals 2.

The existence of an infinite number of marginal terms
at d � 2 is in variance with the LGW theory, in which
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FIG. 2 (color). The diagram for the �4 term in the effective
bosonic action (left) and the schematic diagram for �2n (right).
Different colors show Green’s functions near different hot spots.
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only �4 vertex is marginal. A single marginal vertex
gives rise to only logarithmic corrections to a Gaussian
theory and does not change critical exponents. This al-
lows one to expand critical exponents in 
 � 2� d. An
infinite number of marginal vertices, however, gives rise
to much stronger power law corrections, in which case 

expansion does not work, and anomalous exponents
emerge already at the upper critical dimension. This, in
particular, explains why explicit computations of the
dynamical spin susceptibility [7] at the antiferromagnetic
QCP in d � 2 yield ���;q� / ��Q� q�2 � j�mj�

�1�

with the anomalous exponent  � 0:25.
Our point of departure is the same as in Hertz the-

ory—we consider fermions coupled to a bosonic field �
whose dynamics is governed by the dynamical exponent
z. The Lagrangian density of this model has a form

L � 
c!;kG�1
0 �!;k�c!;k �

1

2
��1
0 ��;q��2

�;q

� g 
c!;kc!��;k�q��;q; (1)

where 
c!;k and c!;k are Grassmann variables, g is the
coupling constant, and the bare fermionic and bosonic
propagators are

G�1
0 �!;k� � !� 
k; (2)

��1
0 ��;q� � ��2 � �q�Q�2 � �i��2=z: (3)

Here 
k is the quasiparticle excitation energy, � is the
correlation length which diverges at the QCP, and Q is the
ordering vector for �. An input for the theory is the
assumption that there exist special hot spots (or lines) at
the Fermi surface separated by Q. In the absence of
nesting, the Fermi velocities at khs and khs �Q are not
antiparallel.

The action of Eq. (1) is quadratic in fermions and Hertz
proceeded by integrating fermions out. This renormalizes
�0��;q� and also introduces the interaction between bo-
sonic fields: �4; �6 terms, etc. Because of particle-hole
symmetry, only terms with an even number of bosonic
field are generated. The resulting action is [8]

SH �
1

2

Z
d�d2q��1��;q��2

�;q

�
X1
n�2

Z
�d�d2q�2n�1b2n���;q�

2n: (4)

The renormalization of ���;q� and the vertices b2n are
given by the diagrams shown in Fig. 2. Hertz assumption
that the vertices are local implies that they all can be
evaluated at bosonic frequencies equal to zero and mo-
menta equal to Q. Consider b4 as an example. The corre-
sponding diagram contains two pairs of Green’s functions
with momenta near khs and khs �Q (see Fig. 2),

b4 

Z d!d2k

�!� 
k � i�!�
2

1

�!� 
k�Q � i�!�
2 : (5)
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One can easily make sure that once we linearize the
dispersion near hot spots, the integral over momentum
would vanish because of double poles [3]. This implies
that the integral in (5) comes from electrons with high
energies, of the order of bandwidth W, where the spec-
trum cannot be linearized. Accordingly, the value of b4
scales inversely with W and vanishes in the continuum
limit W ! 1. The same consideration holds for all other
b2n. For finiteW, all b2n are just some constants. It is then
straightforward to calculate the engineering dimension-
alities of the couplings. Using the fact that �� � z [see
Eq. (3)], we immediately find that in d � 2 the dimen-
sionality of the field is ��2

�;q � �4� z, and the dimen-
sionalities of the vertices are �b2n � 2� �n� 1�z. For
z � 2, this implies that b4 is marginal, while all the other
vertices are irrelevant. This is the known result of the
Hertz theory [2,3].

We now demonstrate that the assumption of the locality
of the interaction is, in fact, incorrect. Indeed, we found
above that the integral in (5) is zero for a linearized
dispersion because of double poles. However, this is true
only when the bosonic frequencies �i are zero. If we
consider instead the limit �i ! 0, we find that there
exists a tiny range of j!j � j�ij where the double poles
split into pairs of closely located poles in different half
planes. The momentum integration then results in small
denominators. This gives rise to universal, anomalous
contributions to b2n, which may be quite large if the small
denominator overshoots the smallness of the frequency
range.

Linearizing fermionic dispersion near khs and khs �Q
and carrying out integration over momentum and fre-
quency in Eq. (5) for nonzero bosonic frequencies �i and
qi � Q, we find that

b4 /
g4

v2F

j�j

��� vF 
q� i��
2 ; (6)

where 
q � q�Q. The exact expression has a complex
dependence on all external momenta and frequencies [7],
but since we are only interested in the engineering di-
mensions, the estimate in (6) is sufficient. We see that b4
strongly depends on the ratio �=vFq and actually be-
-2
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FIG. 3 (color). Hot manifolds in 3D.
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comes large in the limit � ! 0, vFq � 0. We emphasize
that b4 in (6) is universal in the sense that it does not
depend on the details of the fermionic dispersion at en-
ergies of order W and survives in the limit W ! 1.
Restricting with only universal piece in b4, we find that
the �4 term in the effective bosonic action becomes

g4
Z
�d2qd��3

j�j

��� vFq� i��
2 ���;q�

4; (7)

where g4 
 g4=v2F. Performing the same calculation for
vertices b2n with n > 2, we obtain that

b2n /
g2n

v2F

j�j

��� vFq� i��2�n�1�
: (8)

Accordingly, the�2n term in the effective action takes the
form

g2n
Z
�d2qd��2n�1 j�j

��� vFq� i��
2�n�1�

���;q�
2n; (9)

where g2n / g2n=v2F.
We can now reevaluate the scaling dimensionality of

the vertices. Performing the same estimates as for the
Hertz theory, we obtain

�g2n � �2� z�n: (10)

There are two consequences of this result. First, Eq. (10)
holds for all n, down to n � 1. For n � 1, the universal g2
vertex generated by fermions is

g2
Z
�d2qd��j�j���;q�

2: (11)

This is nothing but the Landau damping term. Adding the
g2 vertex to the Gaussian part of the bosonic action, we
find that z � 2 is special in that the form of �0��;q� is
reproduced; i.e., the bosonic dynamics is self-generated.
Furthermore, z � 2 dynamics will obviously dominate
even if in the bare �0��;q� z < 2. Second, we see from
(10) that for z � 2 all vertices are marginal in d � 2.
This is very different from the Hertz theory, where only
the �4 vertex was marginal. There, a single marginal
vertex leads to only logarithmic corrections to �0��;q�
and did not modify critical exponents which remain
mean field in d � 2. However, when the number of mar-
ginal vertices is infinite, this argument does not work as
each vertex now gives rise to logarithmic corrections to
the susceptibility. The infinite series of logarithms com-
ing from all b2n sum up into a power-law correction to the
susceptibility, such that, at � � 1,

��1��;q� / ��q�Q�2 � j�j�1�; (12)

where  > 0. This implies that the system develops an
anomalous exponent  already at the upper critical di-
mension. The exponent 
 0:25 was earlier obtained in
perturbative 1=N calculations [7] for Eq. (3). The present
consideration provides an understanding of its origin.
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We next consider d � 2. For Hertz theory, simple
power counting gives ��2 � �2� d� z, and �b2n �
�2� d� z�n� d� z. This implies that

�b4 � 4� d� z: (13)

For z � 2, the �4 term is irrelevant for d > 2, marginal
for d � 2, and relevant for d < 2. All other vertices are
irrelevant near d � 2. However, as for d � 2, this power
counting is invalidated because there exist universal, non-
analytic contributions to b2n which overshoot regular
pieces. The calculation of the anomalous pieces in b2n
for d � 2 is a bit more involved compared to the d � 2
case as in arbitrary dimension—there exist hot mani-
folds on the Fermi surface instead of hot spots (see Fig. 3).
Still, in a single scattering event, an electron is scattered
from one hot manifold to another. We therefore can again
split the Green’s functions in the integrals for the vertices
into the two groups belonging to one of two manifolds,
and in each manifold evaluate the anomalous contribution
coming from momentum integration transverse to the
Fermi surface. The integration over the remaining com-
ponents of momentum gives the volume of the manifold.
Performing this integration, and also integrating over
frequency, we obtain

b2n /
j�j

��� vFq� i��
2�n�1�

: (14)

The �2n term in the action then becomes

g2n
Z
�ddqd��2n�1���;q�

2n: (15)

Simple power counting now yields

�g2n � d� 2� �d� z� 4�n: (16)

We see that the Gaussian part �g2 � 2� z is independent
of d; i.e., z � 2 dynamics is self-generated in any dimen-
sion. We also see that, for z � 2, g2n � ��n� 1��d� 2�.
This implies that for d > 2 all vertices with n > 1 are
irrelevant, for d � 2 they are all marginal, and for d < 2
they are all relevant. We see therefore that for d < 2 the
number of relevant vertices is infinite. This is another
discrepancy with the Hertz theory.
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The case d < 2 requires further study. Previous analy-
sis of the scaling dimensions of the vertices pertained to a
Gaussian fixed point. Below d � 2, this fixed point is no
longer stable, and we need to find the new stable fixed
point. Our strategy is the following: One can straightfor-
wardly verify that for d < 2 the integration over the hot
manifold, leading to Eq. (15), affects differently the
components of the bosonic momenta parallel to the order-
ing momentum Q and perpendicular to Q (qk and q?,
respectively). We therefore introduce an extra scaling
dimensionality " for one of them. Using " as input, we
obtain scaling dimensionalities of the coupling constants
g2n. We then use the fact that at the fixed point all vertices
must be marginal and obtain the values of z and " at the
new fixed points.

Let us measure the scaling dimensionalities in units
of qk. Then, by definition, �qk�1, while for q? we
introduce

�q? � ": (17)

The Gaussian part of the action is
R
�dd�1q?dqkd���

�q2
k
� q2

?��
2. For"> 1 we can neglect q? in comparison

to qk, while for "< 1 we can neglect qk in comparison to
q?. Using this, we find after simple algebra that the
dimensionality of the field is

��2 � �3� �d� 1�"� z for "> 1;

��2 � �1� �d� 1�"� z for "< 1:
(18)

Using (18), we then find by straightforward calculations
that the dimensionalities of the coupling constants g2n
are

�g2n�n�3��d�1�"�z���d�1�"�1 for">1;

�g2n�n��1��d�5�"�z���d�3�"�1 for"<1:

(19)

(Care has to be taken in regularizing the infrared diver-
gences in the momentum integrals for"< 1.) At the fixed
point, �g2n � 0 for all n. Solving for �g2n � 0, we
obtain

" � 1=�d� 1�
z � 2

�
for "> 1; (20)

" � 1=�3� d�
z � 2=�3� d� � 2"

�
for "< 1: (21)

We see from (20) and (21) that each inequality is indeed
satisfied only if d < 2. This implies that for d < 2 there
exist two fixed points. They progressively deviate from
each other as 2� d increases. Obviously, one of these
fixed points is stable and the other is unstable. To deter-
mine which one is stable, we use the result of perturbative
1=N analysis of logarithmic corrections to vFqk and
vFq? for d � 2 [7]. According to Ref. [7], the ratio
q?=qk / 1= log� renormalizes to zero at � � 1 (this
makes the Fermi surface nested at the hot spots at the
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QCP). By continuity, this implies that the stable fixed
point is the one with "> 1. We see from (21) that at a
stable non-Gaussian fixed point the dynamical exponent
remains z � 2

In summary we have demonstrated that Hertz theory
of quantum criticality is incomplete. We have shown that
all vertices in the effective bosonic theory possess uni-
versal, anomalous pieces which overshoot constant terms
of the Hertz theory. For quadratic part of the action, this
universal contribution is the Landau damping term. We
found that z � 2 is special in that the theory is renorma-
lizable for any d. The upper critical dimension for z � 2
is dcr � 2, as in Hertz theory; however, the number of
marginal vertices at d � 2 is infinite. This gives rise to the
appearance of the anomalous exponent already at d � 2.
For d < 2, the number of relevant vertices is infinite. We
found that the Gaussian fixed point is unstable, and there
exist two non-Gaussian fixed points with different scaling
dimensions for different components of the momentum.
At each of these new fixed points, there is an infinite
number of marginal vertices. We found that one of these
points is stable and one unstable. Still, for both fixed
points, the dynamical exponent, measured in units of
the largest component of the momentum, remains z � 2.
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