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Air Entrainment by a Viscous Jet Plunging into a Bath
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A liquid jet plunging into a container of liquid often entrains a thin film of air with it, producing
bubbles. This bubble production is detrimental to many industrial processes, such as filling a container
with a molten glass or polymer, or in coating processes. Conversely, in making a foam, one uses this
effect; hence it is important to control the rate of bubble production. Here, we measure the amount of air
entrained by a viscous jet over a wide range of parameters and explain the phenomenon theoretically.
Simple scaling arguments are shown to predict entrainment rates over 4 orders of magnitude in the
dimensionless jet speed.
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FIG. 1. Experimental setup. A cylindrical liquid jet of vis-
cosity � surrounded by a fluid medium of viscosity �0 plunges
into a bath of the same liquid. The diameter of the jet is
between 1.5 and 5 mm. On the left, the velocity of the jet is
below the threshold velocity, and, on the right, it is above;
hence the jet entrains an air film of thickness h into the bath.
Air entrainment is a common phenomenon that can be
encountered in many environmental situations, such as in
breaking waves or steep chutes which contributes to river
oxygenation, or in various industrial processes, such as
aeration of water in open channels, coating processes, or
the pouring of liquids. A paradigm for air entrainment is
a jet plunging into a bath of fluid. If the fluid viscosity is
small (e.g., water) [1–3], air entrainment occurs only if it
is provoked by perturbing the jet. If the viscosity is higher
(100 times that of water or more) [4,5], air entrainment
occurs spontaneously by producing an air film. Here we
present the first experimental measurements of entrain-
ment rates and explain the results theoretically.

As described in [4–8], the liquid-air interface is hol-
lowed by the flow of the plunging jet and a dip is formed
around the fluid stream. Such a profile, which is continu-
ous as long as the velocity V of the jet is constant, can be
seen in Fig. 1(a). Something more dramatic happens if V
increases above a threshold value Vc. The stationary
profile ceases to exist, and a film of air is entrained
with the jet into the bath. This gaseous film, which wraps
around the liquid jet, decays into air bubbles a few cen-
timeters below the surface [9]. This phenomenon is of
tremendous practical importance: in many industrial pro-
cesses a viscous liquid (typically molten glass, metal, or
polymer) is poured inside a mold and the formation of
bubbles damages the quality of the molded object.

Previous studies have focused on the threshold velocity
Vc below which no air is entrained. At speeds close to Vc
the interface at the bottom of the hollow region is very
close to a cusp [see the circled zone of Fig. 1(a)]. Such
singular features of free surfaces were first reported by
Joseph et al. [10] and analyzed theoretically by Jeong and
Moffatt [11], who found that a local balance between
viscosity � and surface tension � produces curvatures
which increase exponentially with the capillary number
Ca � �V=�.
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Any increase in jet velocity leads to a large decrease of
the radius of curvature at the tip of the cusp. As pointed
out in [6], this eventually results in the destruction of this
tip: the upper fluid (usually air, of viscosity �0) is forced
into the tip and back out again by the external flow, and
thus exerts a lubrication pressure on it. Below a critical tip
radius (thus above a critical jet velocity), the tip ‘‘cracks’’
and a thin film of the upper fluid (often air) is entrained
inside the bath [4,12,13]. In [6] it was shown that this
critical tip radius increases with �0=�, which together
with Moffatt’s law for the critical radius yields a thresh-
old velocity Vc / ln��=�0�, as was recently confirmed
experimentally [7,8].

Just below Vc, we experimentally find the depth L of
the region hollowed by the jet [cf. Fig. 2(a)] to be about
1 cm, several times the capillary length. This agrees with
the estimate of L �

������������������
�Vc=	g

p
, which follows from bal-

ancing viscous forces with gravity [7]. The surface defor-
mation as measured by L thus far exceeds the capillary
length ��1 �

������������
�=	g

p
, which results from a capillary-

gravity balance.
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The temporal development of the air film displayed in
Fig. 2 indeed illustrates these different features. A jet
1.5 mm in diameter (about 1000 times more viscous
than water) plunges into a bath of the same liquid. The
jet velocity is controlled by the height of the reservoir
from which the jet is formed. It is measured with a fast
camera by following the motion of particles inserted
randomly into the jet. Right above the interface, the
velocity profile was observed to be a plug flow. In
Fig. 2(a), the jet velocity is below the velocity of entrain-
ment (V < Vc); hence the profile observed is stationary.
The height of the reservoir, and therefore the velocity of
the jet, is slightly increased between panel 2(a) and
panel 2(b). This rise has a dramatic effect: the interface
breaks and the jet entrains with it a thin air film (looking
black because of light reflection). Its length grows from
panel 2(b) to panel 2(f), where it reaches its final sta-
tionary trumpet shape. This shape is expected since the
jet slows down as it enters the bath, and conservation of
mass implies a gradual increase in radius (from which we
can deduce the jet velocity as it penetrates the bath). At a
certain depth (of several centimeters), the film decays into
bubbles that are then driven upward and burst when they
reach the surface. Note the velocity of the jet remains
constant from panel 2(b) to panel 2(f).
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FIG. 2. A jet of viscous liquid (here silicone oil of viscosity
� � 970 mPa s) and diameter 1.5 mm impinging on a bath of
the same liquid. (a) Below a threshold velocity, the jet hollows
the bath surface to a depth L, which increases with jet velocity
up to a value of about 1 cm. (b)–(e) Above this threshold, air is
entrained with the jet and (f) forms a stationary trumpetlike
shape. At the same time, the surface of the bath around the jet
relaxes to the shape of a static nonwetting meniscus, whose size
is in the order of millimeters. The interval between two suc-
cessive pictures is 130 ms. Note that the black line at the edge
of the jet is no indication of the film thickness; it is due to the
reflection of light by the curved air film of lower index of
refraction.
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The formation of the new stationary state [panel 2(f)]
is accompanied by a considerable reduction in surface
deformation of the bath. This is because the air film
now ‘‘lubricates’’ the entry of the fluid jet, and shear
stresses both inside the jet and in the liquid bath are
greatly reduced. Instead, the shape of the bath surface
close to the jet is now set by a purely static balance of
gravity and surface tension forces, as confirmed by our
measurements of the interface shape presented in Fig. 3.
We superimpose profiles of the final shape [cf. Fig. 2(f)]
corresponding to different jet velocities and compare
them in Fig. 3 to the shape of a static meniscus drawn
in full line in this figure. The latter is obtained by inte-
grating the Laplace equation �C � 	gz (C is the inter-
face curvature) twice, assuming a ‘‘contact angle’’ of
180� with the air film and a flat profile for z � 0. The
remarkable consequence of this observation is that for
� � �0 the fluid viscosity � becomes inconsequential,
and the rate of air entrainment is determined by the speed
of the jet and the viscosity of the entrained fluid �0 alone.

Accordingly, we measured the variation of the film
thickness h with jet speed for different values of �0. In
the case of oil films (between 10 and 30 times the vis-
cosity of water) in a glycerol bath, the film thickness
could be measured optically. To measure the thickness
of the film of air (a few microns), we determined the total
volume of the air bubbles being formed, thus giving the
flow rate of air. Knowing the mean velocity of the air
film, i.e., half the velocity of the jet, and the radius of the
jet R, we can deduce the thickness of the film. Note that
we measure R close to the surface, where it is very nearly
constant, indicating that the jet speed is also constant and
equal to the original jet velocity.
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FIG. 3. Profile of the interface between the bath and the film
of air, deduced from photographs such as Fig. 2(f), shown as
the black line in the inset. The depth of the meniscus is plotted
as a function of the radial position, and only the upper part
where the trumpet joins the rest of the bath is shown. The
different data points correspond to different jet velocities (all
above the threshold velocity of air entrainment), between 0.7
and 2:2 m=s. The corresponding jet diameters are between 3.5
and 5.2 mm. All the data collapse onto the solid line, the static
profile of a nonwetting meniscus.
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FIG. 5. (a) Thickness of the air film entrained by a glycerol
jet (of diameter 1.5 mm) impacting a glycerol bath (open
squares; the diamond is obtained using a silicone oil of same
viscosity yet different surface tension as glycerol).
(b) Thickness of oil films (solid symbols) entrained by a
glycerol sheet surrounded by oil, impacting a glycerol bath.
The thickness is normalized by the capillary length and plotted
in logarithmic scales as a function of the capillary number
Ca0 � �0V=�. The data are fitted by a straight line corre-
sponding to Eq. (1), with prefactor 0:5	 0:2.
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FIG. 4. Thickness of the film entrained by a glycerol jet (� � 900 mPa s) impacting a bath of glycerol. (a) Air film (�0 �
2
 10�2 mPa s), obtained with jets of diameter between 1.5 and 1.6 mm. (b) Oil films (the black, white, and gray symbols designate
silicone oils of respective viscosity �0 � 8; 20, and 32 mPa s), obtained by the impact of a glycerol sheet surrounded by oil. Note the
difference in thickness between both cases. The fits are scaling laws of the form V�, giving in both cases � � 0:7	 0:1.
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We find that, for a given liquid-liquid or gas-liquid
system, the film thickness increases with the jet velocity
as a power law V�, best fits giving � � 0:7	 0:1 (cf.
Fig. 4). In fact, using a simple scaling argument based
on our previous observations, we are able to quantitatively
describe all our data. Namely, the film is sustained by the
interplay between surface tension forces in the outer
meniscus (which oppose the film’s formation) and the
viscous forces inside the thin film (which are responsible
for entrainment). Equating pressure gradients at the junc-
tion between the static meniscus and the film, we obtain

��=� � �0V=h
2:

On the right-hand side appears the classical expression
for the lubrication pressure gradient [14] based on the
film’s viscosity �0, on the left-hand side, the gradient of
curvature. To estimate the latter, we introduced a typical
length scale � over which the film thickness is varying in
the matching region. To determine �, we observe that the
curvature of the film and of the static meniscus must
match, yielding

� � h=�2:

Combining both equations yields our central result:

h � ��1��0V=��2=3: (1)

The predictive power of this expression is best appreci-
ated by summarizing our data for different upper viscos-
ities �0 using the appropriate capillary number
Ca0 � �0V=�. As shown in Fig. 5, Eq. (1) correctly
predicts the Ca2=30 behavior over 4 orders of magnitude
in the capillary number and for a variety of different
fluid-fluid and air-fluid systems. The straight line of
Fig. 5 represents Eq. (1), including a prefactor 0:5	 0:2
which has been fitted to the data.

It has not escaped our notice that the arguments leading
to (1) are the same used to derive the well-known
Landau-Levich law [15,16] for the thickness of the fluid
film entrained on a solid plate or fiber being withdrawn
from a bath of viscous liquid [17]. In that case, the
prefactor of Eq. (1) has been calculated and found equal
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to 0.9. Quite surprisingly, very similar arguments still
apply in our case, but with the liquid jet assuming the role
of the solid plate and the air the role of the viscous fluid.
The reason is that the air film serves to isolate the jet from
the rest of the fluid, such that the viscous fluid no longer
plays a dynamical role, but just supplies the boundary
conditions.

In fact, the boundary conditions that apply here are
slightly different from those of the classical Landau-
Levich problem. Namely, the outer boundary condition
for the film now is that of a deformable solid, which
changes the prefactors but not the scaling laws.
Schwartz et al. [18] showed that a solidlike boundary
thickens the entrained film (by a factor of 22=3), which
physically is due to the increased resistance of the capil-
lary backflow, making it less efficient than in the presence
of a free boundary. Combining the prefactor of 0.9 given
by the classical Landau-Levich law and the correction
cited above gives a prefactor of 1.4 for Eq. (1), which is 3
times larger than the one we found experimentally.

The change in boundary condition toward that of a
solid also affects the flux of entrained matter: since the
flow in the entrained film has a Couette profile (instead of
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being a plug flow, as in a classical Landau-Levich film),
we find Q � 2�RhV=2 for the flux, denoting the jet
radius as R. Thus the flow of air depends strongly (as
V5=3) on the velocity, as suggested by everyday experi-
ence: we all know that the injection of air into an egg
white is considerably enhanced by using a (fast) beater
rather than a fork.

Figure 5(b) shows that (1) still describes our data for
capillary numbers approaching unity, which can be
understood by an argument proposed by Derjaguin [14].
For Ca0 larger than unity, the meniscus is no longer
quasistatic, but deformed by the flow, and gravity (instead
of surface tension) becomes the force opposing entrain-
ment. Balancing gravity �	g with the viscous force
�0V=h2 immediately yields h� ��1��0V=��1=2 as the
entrainment law at large capillary number. This slight
difference in exponent (1=2 instead of 2=3) implies a
gradual transition toward another scaling law for large
Ca0, with relatively small corrections to (1) for Ca0 < 1.

However, we do note that the high capillary number
data fall below the line given by (1), which is probably the
result of the transition toward the new power law. Fitting
the prefactor only to the low capillary number data
(Fig. 5(a)) would increase it and bring it closer to the
theoretical prediction. The origin of the remaining dis-
crepancy in the prefactor may be related to the fineness of
the jet: Figure 5(a) is obtained with jets of diameter 2R�
1:5 mm, so that we expect that the antagonist curvature of
the jet tends to thin the film (because of its positive
Laplace pressure). This does not modify the variation in
Ca2=30 , but yields a correction in the prefactor in Eq. (1)
scaling as R�, which is of the order of 0.34 in the experi-
ments displayed in Fig. 5(a).

Our results might be relevant to both the making of
foams, as well as for the understanding of the way emul-
sions form. The main remaining obstacle is to elucidate
the role of surfactants in both processes, which is the next
step in our research program. We also expect that the rate
of air entrained by solids plunging into a viscous bath—
which, to the best of our knowledge, has never been
explained—should be given by the same arguments, the
air film similarly allowing a decoupling between the
moving solid and the quiescent bath.

Note finally that a similar phenomenology is observed
in a variety of situations where entrainment is forced ex-
ternally, for example, by a rotating cylinder [10]. Another
example consists in extracting the upper liquid from a
two-fluid interface through a pipette (selective with-
drawal) [19]. Above a threshold velocity, a very thin
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stream of the lower liquid is extracted as well. However,
in these cases there is no decoupling between the ex-
tracted liquid and the quiescent bath, so our reasoning
does not apply. Instead, an alternative scaling theory was
recently put forward for selective withdrawal [20].

In conclusion, we have presented a unifying picture for
the rate of air entrainment into a viscous fluid, by impact-
ing both jets and solids. The rate depends strongly on the
jet velocity, while the fluid viscosity is unimportant. A
number of related entrainment phenomena remain to be
understood.
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[2] C. D. Ohl, H. N. Ogũz, and A. Prosperetti, Phys. Fluids
12, 1710 (2000).

[3] B. Kersten, C. D. Ohl, and A. Prosperetti, Phys. Fluids 15,
821 (2003).

[4] T. Lin and H. Donelly, AIChE J. 12, 563 (1981).
[5] A. K. Bin, Chem. Eng. Sci. 48, 3585 (1993).
[6] J. Eggers, Phys. Rev. Lett. 86, 4290 (2001).
[7] E. Lorenceau, F. Restagno, and D. Quéré, Phys. Rev. Lett.
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