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Universality of Soft and Collinear Factors in Hard-Scattering Factorization
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Universality in QCD factorization of parton densities, fragmentation functions, and soft factors is
endangered by the process dependence of the directions of Wilson lines in their definitions. We find a
choice of directions that is consistent with factorization and that gives universality between e�e�

annihilation, semi-inclusive deep-inelastic scattering, and the Drell-Yan process. Universality is only
modified by a time-reversal transformation of the soft function and parton densities between Drell-Yan
and the other processes, whose only effect is the known reversal of sign for T-odd parton densities such as
the Sivers function. The modifications of the definitions needed to remove rapidity divergences with
lightlike Wilson lines do not affect the results.
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Introduction. Much of the predictive power of QCD is
provided by universality of the nonperturbative functions
in factorization theorems for hard processes. These func-
tions are parton densities, fragmentation functions, etc.,
Whereas the perturbative parts of factorization formulae
can be usefully estimated from first principles by weak
coupling methods, the nonperturbative functions cannot.
Universality is the process independence of these func-
tions. It allows them to be measured from a limited set of
reactions, and then used to predict other reactions, with the
aid of factorization and perturbative calculations.

However, recent developments [1–5] show that univer-
sality is endangered. For example, the Sivers function
[6]—the transverse single-spin asymmetry of a parton
density—changes sign [1,3] between the Drell-Yan pro-
cess and deep-inelastic scattering. This is because the
directions of the Wilson lines necessary for a gauge-
invariant definition of a parton density depend on whether
collinear and soft interactions are before or after the hard
scattering. Important current experimental work [7] ad-
dresses the associated physics issues.

Although for parton densities time reversal relates the
two definitions [1], the situation is not so clear in general.
For example, a fragmentation function involves a semi-
inclusive sum over out-states:

X
X

jA;X; outihA;X; outj: (1)

Time reversal converts these to in-states, and therefore
does not prove universality with the obvious, process-
dependent directions for the Wilson lines [4]—although
the nonuniversality did not occur in a one-loop model
calculation [8]. Moreover, for hadron production in
hadron-hadron collisions, Bomhof, Mulders, and Pijlman
[5] found a jungle of Wilson lines whose universality
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properties are far from clear; see also the comments of
Brodsky, Hwang, and Schmidt [3].

Therefore in this Letter we carefully reexamine the
arguments about Wilson lines to discover the true limits
of universality, if any. The issues particularly concern
processes that need transverse-momentum-dependent
(TMD) partonic functions, and we consider three such
processes: (a) e�e� annihilation with detected almost
back-to-back hadrons [9], (b) semi-inclusive deep-inelastic
scattering (SIDIS) with measured transverse-momentum
for an outgoing hadron [10,11], and (c) the Drell-Yan
process with measured transverse momentum [12]. For
the first process, Collins and Soper showed a factorization
theorem more than two decades ago [9]. But the paper [12]
extending the statement of factorization to the Drell-Yan
process claimed no proof.

Our new methods show, in addition to the time-reversal-
modified universality [1] of parton densities, that (1) TMD
fragmentation functions are universal between e�e� anni-
hilation and SIDIS. (2) The soft factor is universal between
all three processes. (3) Universality arguments hold even
with a redefinition of the nonperturbative functions needed
to remove the divergences due to lightlike Wilson lines.
Our arguments delimit the process-dependent choices of
direction that are compatible with factorization, and for
individual processes the choice is wider than previously
used [4,11,13].

The central technical issue is that a proof of factorization
requires an appropriate deformation [14] of momentum
contours out of the ‘‘Glauber region’’. Allowed directions
of the Wilson lines are those compatible with the contour
deformation. The possible directions of contour deforma-
tion are determined by the space-time location of soft and
collinear interactions relative to the hard scattering. Hence
a careful analysis of one-gluon corrections, which forms
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the bulk of our work in this Letter, should be sufficient to
determine the directions.

Factorization and Wilson lines. Factorization into
hard, collinear, and soft factors results essentially from a
corresponding set of momentum regions. Individual graphs
for a cross section have a range of possible leading regions
of loop-momentum space, and we will follow the approach
of Collins and Hautmann [13] by using a subtractive
method that implements a decomposition of graphs by
possible regions. Full details of the subtractive method to
all orders have not been worked out explicitly, but it should
give factorization after a sum over graphs and regions. A
l

h1

h2

FIG. 1. Sample virtual one-loop diagrams for e�e� annihila-
tion, with fragmentation considered in a spectator model.
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Ward identity argument is needed to disentangle otherwise
coupled factors, and it results in simple Wilson lines in the
gauge-invariant operator definitions of the factors.

Electron-positron annihilation. We first consider
e�e� annihilation at large Q with two detected hadrons
h1 and h2 in almost back-to-back directions, for which
some simple graphs with a virtual gluon are shown in
Fig. 1. (The contour deformation issues arise only for
virtual gluons.)

For the first graph, we make, as in [13], a decomposition
into four terms: hard, collinear to h1, collinear to h2, and
soft. Critical for determining the directions of the Wilson
lines is the soft term:
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where MS denotes the modified minimal subtraction
scheme. Here we use light-front coordinates in the center
of mass with the dominant components of the momenta of
h1 and h2 being P�

1 and P�
2 .

In the h1 and h2 parts of the graph we have retained only
the � and � components of the gluon momentum l, and we
have picked out the dominant components of the current to
which the gluon couples. We have inserted factors of l�

and l� to allow Ward identities to be used and then
compensated this in the first term in brackets by dividing
by l� and l�. With this first term we obtain a good
approximation to the original graph in the soft region,
provided that we make a suitable deformation out of the
Glauber subregion of the soft region. The Glauber region is
where jl�l�j 	 l2T . The second and third terms are coun-
terterms, to cancel the divergences at large positive and
negative gluon rapidity that would arise if only the first
term were used.

The counterterms have arbitrary positive parameters CA
and CB of orderQ2=m2 (withm being a soft scale), they are
power suppressed in the soft region, and they allow a
Wilson-line definition of the soft factor. The arbitrariness
of CA and CB is exploited by the use of the Collins-Soper
[9] equation, which controls the CA and CB dependence of
the soft and collinear factors, and so enables predictions to
be made.

The contour deformation must not cross the final-state
quark poles in the original graph. We choose to deform
symmetrically out of the Glauber region: �l� � iw,
�l� � �iw, where w is a suitable positive function of
the real parts of l�. Compatibility with this deformation
determines uniquely that the lightlike Wilson-line denom-
inators are �l� � i� and l� � i�, and that the signs of the
CA and CB terms relative to their i�’s are as shown. But it
does not determine whether the counterterm lines are
spacelike or timelike. A legitimate possibility not noticed
in [13] is that one or both could be timelike: l� � CAl� �
i�, �l� � CBl� � i�.

There is also an ultraviolet divergence at large lT which
we remove by ordinary renormalization. Neither the rapid-
ity divergences nor the UV divergence affect the validity of
the soft approximation in the soft region.

In coordinate space, both lightlike Wilson lines are
future pointing, as is intuitively natural. They approximate
a fast-moving quark and a fast-moving antiquark as seen
by a slow gluon. (However, the nonlightlike lines in the
counterterms are past pointing, not so intuitively.)

We choose spacelike lines in the counterterms because
they are compatible with one of the possibilities for the
counterterms in SIDIS, and so they allow a proof of uni-
versality. Furthermore, exact properties of matrix elements
of Wilson lines are simpler when the gluon fields are at
spacelike separation and hence all commute.

Another possible change is to use an asymmetric contour
deformation, such as we choose in SIDIS, i.e., primarily on
l� only or on l�. But it can be shown that the only extra
resulting cases for the i� prescriptions violate the charge-
conjugation relationships between fragmentation for
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quarks and antiquarks. They would therefore remove pre-
dictive power from factorization.

In the method of Ji, Ma, and Yuan [11] there are no
counterterms; instead they use slightly nonlightlike lines to
cutoff the rapidity divergences. Their square-bracket factor
would be

1

�l�=CA � l� � i����l�=CB � l� � i��
: (3)

The Wilson lines are actually future pointing, since the
denominators are on opposite sides of the graph compared
with the corresponding past-pointing spacelike lines in
Eq. (2). Some differences with our formulation are ines-
sential power-law corrections. But there are also different
leading-power contributions to the soft and collinear fac-
tors. We remark without proof that these only occur at large
transverse momentum for the gluon and therefore amount
to a legitimate scheme change. The subtractive method
provides simpler calculations and a cleaner proof of
universality.

Once the soft term is fixed, definite prescriptions for the
collinear and hard terms follow, just as in [13], so we will
not present them here.

There are many other graphs for the process, both with
different connections of the gluon, as in Fig. 1, and with
arbitrarily many other lines. In all leading regions, the
collinear parts are in the final state, so we can continue
applying the same prescription for the contour deforma-
tions and for the counterterms. Of course, to use Ward
identities we must use the same prescription everywhere.
So we have determined all the Wilson lines.

Semi-inclusive DIS. We now consider similar graphs
for SIDIS, as in Fig. 2. As concerns the contour deforma-
tion from the Glauber region, the primary difference is that
in the h1 part of the graph the flow of l relative to collinear
momenta is reversed. So we have denominators like �k1 �
l�2 �m2 � i� instead of �k1 � l�2 �m2 � i�. This sug-
gests reversing the contour deformation on l�, to give
h1

h2

FIG. 2. Sample one-loop diagrams for SIDIS.
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�l� � iw, �l� � iw. Then, following [11], we might
reverse the relative signs of l� and i� compared with
Eq. (2), to get a square-bracket factor
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The counterterm lines are now timelike.
Corresponding timelike lines must also appear in the

fragmentation function, so that compared with e�e� anni-
hilation, the definitions of both the fragmentation function
and the soft factor are different, and we lose manifest
universality. Now both CA and CB are large, so that we
can in fact use spacelike lines with our symmetric contour
deformation (and similarly in the Ji, Ma and Yuan version):

1

��l� � i���l� � i��
�

1

��l� � i���l� � CAl
� � i��

�
1

��l� � CBl� � i���l� � i��
: (5)

But even this still differs from the version for e�e� anni-
hilation, so we cannot directly deduce universality.

Moreover, in the second graph of Fig. 2 the symmetric
contour deformation is blocked by a trap between initial-
state and final-state poles in the target part of the graph.
When transverse momenta are of order m, the deformation
on l� is limited to m2=Q, not enough to get out of the
Glauber region. So, as in the proof of factorization for
diffractive DIS [15], we should deform primarily on l�,
away from the pole(s) in the outgoing struck quark and its
jet; this typically makes l collinear to the target, rather than
merely soft. Only small deformations on l� are necessary
to avoid the target side poles both in the original graph and
in the Wilson-line approximations.

We can now use exactly the same square-bracket factor
as in e�e� annihilation. Since the same direction of con-
tour deformation can be applied generally, for the Glauber
regions for all graphs, the Wilson lines in the soft and
fragmentation factors are the same as in e�e� annihilation.
Thus the soft and fragmentation factors are universal be-
tween SIDIS and e�e� annihilation. Spacelike counter-
term denominators, like l� � CAl

� � i�, are preferred
here, since the large positive imaginary part of l� assists
rather than hinders the deformation of l� from an unphys-
ical pole.

Drell-Yan process. In Fig. 3, we show some graphs for
the Drell-Yan process. In the first graph, the gluon attaches
to two initial-state lines, so we use a contour deformation
opposite to that in e�e� annihilation.

But other graphs trap the contour against final-state
poles in the target parts of the graphs. Now to prove
factorization [16] one can deform away from initial-state
poles. Crossing target-related final-state poles produces
extra nonfactorizing terms, but these cancel by unitarity,
after a sum over all hadronic states in the inclusive cross
1-3



FIG. 3. Sample one-loop diagrams for the Drell-Yan process.
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section. The argument does not depend on the transverse
momentum of the lepton pair.

Therefore we find that we can use initial-state Wilson
lines for the parton densities and for the soft factor. The
time-reversal argument of [1] applies to all these objects,
since they all involve only matrix elements of the form
h jA1A2j i, where A1 and A2 are operators and  labels a
vacuum or a one-particle state. Such states are the same no
matter whether they are in-states or out-states, so the trans-
formation by time reversal leaves them unaffected.

This extends the exact universality of parton densities
and soft factors to the Drell-Yan process, with the excep-
tion of ‘‘T-odd’’ parton densities, which reverse sign [1], as
is already known. Our proof now includes Wilson-line
factors that implement [17] the cancellation of rapidity
divergences.

Conclusions and discussion. We have shown univer-
sality of fragmentation functions, soft factors, and parton
densities between e�e� annihilation, semi-inclusive deep-
inelastic scattering, and the Drell-Yan process. This applies
both to the basic definitions with lightlike Wilson lines and
to the correct definitions with removal of rapidity diver-
gences. Regulator lines should be spacelike. In the Drell-
Yan process the lines are reversed compared with the other
processes we considered, but time reversal relates them to
the functions for other processes, with the usual reversal of
sign for the Sivers function and other T-odd parton
densities.

This eliminates missing elements in the Collins-Soper-
Sterman formalism [12] for the Drell-Yan process.

The method of Ji, Ma, and Yuan [11] uses nonlightlike
Wilson lines instead of counterterms for removing rapidity
divergences. Within this method we find universality if the
fragmentation function and the soft factor in SIDIS have
future-pointing spacelike Wilson lines, contrary to the
choice made by these authors.

Since we need definitions of TMD parton densities that
differ from the most obvious ones that use light-front
quantization in light-front gauge, we agree with the con-
clusion of Brodsky et al. [18] that parton densities are not
literally probability densities. However, our reasoning is
different, and builds on the much earlier work of Collins
and Soper [9,19].
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Our work needs extension to hard hadron-production
processes in hadron-hadron collisions. It is not obvious
that the extension will succeed. Factorization for these
processes is at present an unproved conjecture, at least
for cases where transverse-momentum-dependent parton
densities and fragmentation functions are needed.

Even for conventional hadron-hadron-to-hadron factori-
zation with ordinary, integrated parton densities, there is no
proof in the literature which correctly treats the Glauber
region, as far as we know. The factorization proofs of
Collins, Soper, and Sterman [16] and Bodwin [20] are
only for the Drell-Yan process. A critical reexamination
is needed here.
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40577, and by the Sofia Kovalewskaya Programme of the
Alexander von Humboldt Foundation.
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