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Stability Properties of Nonhyperbolic Chaotic Attractors with Respect to Noise
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We study local and global stability of nonhyperbolic chaotic attractors contaminated by noise. The
former is given by the maximum distance of a noisy trajectory from the noisefree attractor, while the latter
is provided by the minimal escape energy necessary to leave the basin of attraction, calculated with the
Hamiltonian theory of large fluctuations. We establish the important and counterintuitive result that both
concepts may be opposed to each other. Even when one attractor is globally more stable than another one,
it can be locally less stable. Our results are exemplified with the Holmes map, for two different sets of
parameter, and with a juxtaposition of the Holmes and the Ikeda maps. Finally, the experimental relevance
of these findings is pointed out.
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Noise plays an important role in nonlinear systems.
Specifically, the fundamental question of the effect of noise
on the stability of a chaotic attractor can be viewed under
two different angles. The first aspect is to consider the
escape from an attractor through random fluctuations.
This is termed global stability. Relevant examples range
from switching in lasers [1], Penning traps [2], over chemi-
cal reactions [3] to electronic circuits [4]. Since the seminal
work of Kramers [5], this problem has been treated for a
broad range of settings [6]. For nonequilibrium systems, a
WKB-like extension of Kramers’ equilibrium theory has
been devised [7,8]. This so-called Hamiltonian theory of
large fluctuations uses an approach similar to path inte-
grals, thus obtaining the most probable exit path (MPEP).
The MPEP, with an exponentially favored probability of
occurrence, yields in turn the optimal fluctuations and the
minimal escape energy as well.

This theory has been employed for the calculation of the
escape from a periodic state [9–13]. Recently, it has also
become possible to treat the escape from a nonhyperbolic
chaotic attractor (NCA) [14], whose stable and unstable
manifolds exhibit tangencies. It was demonstrated that the
MPEP is uniquely determined by the primary homoclinic
tangency (PHT) closest to the basin boundary. A tangency
is homoclinic if both manifolds belong to the same periodic
orbit and primary if a perturbation is amplified under
forward and backward iteration of the dynamics. Since,
in practice, virtually all chaotic attractors appear to be
nonhyperbolic, it can be considered as the general case.

The second aspect of noise effects on NCAs is local
stability, which is a measure of the maximum distance of a
noisy trajectory from the noisefree attractor. Here, the
trajectory is always close to the attractor, without leaving
its basin of attraction. The concept of local stability of a
NCA against noise is of fundamental importance and has
bearings, e.g., on noise reduction [15], reconstruction of
dynamical quantities [16], parameter estimation [17], noise
level evaluation [18], and communication with chaos [19].
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When applying noise bounded by �, for hyperbolic attrac-
tors the maximum distance scales as �max � � [20]. For
NCAs, however, it was shown that there is a much larger
�max as compared to the hyperbolic case [21], caused by
attractor elongating deformations along the PHT and their
images (see [22,23] as well). This was also confirmed
experimentally [24].

In this Letter we contrast these two measures of stability.
While it is usually assumed that they behave in a similar
fashion, we point out here, however, the following counter-
intuitive effect: a nonhyberpolic chaotic attractor can be, in
the above defined sense, globally more stable than another
one, yet locally less stable. This is all the more surprising
as both stability properties are intimately related to the
primary homoclinic tangency. This phenomenon can be
understood, though, by taking into account that for global
stability the preimages are most relevant, constituting the
proper and unique initial conditions for the most probable
exit path [14]. On the other hand, for local stability, only
the images govern the process [21], as their local expansion
rates, given by Eq. (2) below, contribute to a divergence
from the attractor. Consequently, for local stability, only
linear properties of the system are relevant, whereas global
stability can only be fully described by the complete set of
variational equations, which are nonlinear.

We illustrate these findings first with the Holmes map
[25] with two different sets of parameters. Thereafter, we
demonstrate this phenomenon by comparing the Holmes
and the Ikeda maps [26]. Since the Hamiltonian theory of
large fluctuations is only valid for Gaussian noise and the
maximum distance is only well defined for bounded noise,
we calculate for local stability also the averaged Gaussian
distance, including higher moments. This removes any
particularity of comparing different noise distributions.
The outcome of the calculation corroborates our main
claim, too.

As a fundamental dynamical example, we consider the
Holmes map [25]
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FIG. 1. Maximum distance �max versus noise intensity � for
the Holmes map, with the parameters (i) a � 0:047, b � 2:4,
and c � 0:155 (circles) and (ii) a � 0:01, b � 2:8, and c � 0:8
(squares). The regions of linear growth are fitted by straight lines
and marked with the number n of the corresponding image of the
PHT. For each noise strength, 5� 109 iterations have been used.
The inset shows the average h�qi1=q, q � 1; 10, with Gaussian
noise for set (i) (circles) and set (ii) (squares). 109 iterations for
each noise level have been averaged over.
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xn�1 � yn � �x; yn�1 � axn � byn � cy3n � �y; (1)

with the white noise terms �x; �y uniformly distributed in
the disk �: �2

x � �2
y � �. We choose the first set of pa-

rameters to be (i) a � 0:047, b � 2:4, and c � 0:155. That
gives two attractors, symmetrical with respect to the origin;
we focus only on one of these. When increasing b, these
attractors merge in a crisis. Our second set of parameters is
then in the region, where only one large symmetric chaotic
attractor exists, (ii) a � 0:01, b � 2:8, and c � 0:8. Both
NCAs are normalized in a twofold way. First, the exten-
sions in phase space E �

������������������������������������������������������
�xmax � xmin��ymax � ymin�

p
are

demanded to be the same, because then the percentage of
noise on each attractor is identical. This is a common
measure of the relative noise intensity, in turn adjusting
the local properties. Second, the threshold of escape from
the NCAs with bounded noise is also required to be equal.
This guarantees the same scaling region for the maximum
distance and calibrates the global properties. For the
chosen parameters, the two measures yield E � 3:1 and
�escape � 0:13 [27]. With these two conditions met, the
comparison is as general and unambiguous as possible.

Let �k be at each step of iteration the minimum distance
of the noisy trajectory from the noiseless attractor. The
maximum distance �max of the whole trajectory is then
defined as the maximum over all the minimum distances:
�max � maxk��k�. For the numerical computation, we par-
tition the attractor with a grid of box edge length l, where l
depends on the noise strength and the desired resolution
(0:0005 � l � 0:01). We store only a limited number of
points of the noiseless attractor per box of the grid (ca.
100). Each point of the noisy trajectory is then compared
solely to attractor points of the box it falls in and the
neighboring ones. If they are empty, the number of neigh-
bors is increased until a point of the attractor has been
encountered. This provides, for each trajectory point, the
minimum distance from the attractor �k, and the largest of
these is �max. With this method we get a much better
accuracy and a larger scaling region than in [22,23] while
simultaneously saving storage and computation time.

The result of the calculation for the two NCAs is shown
in Fig. 1. The scaling is limited for small noise by our
computational resolution and for large noise by the trajec-
tory escaping from the attractor. It is apparent from the
graph that, for all noise intensities, set (i) (circles) exhibits
a larger �max than set (ii) (squares), indicating that the
attractor (ii) is locally more stable than (i).

The two curves in the log-log scale of Fig. 1 are straight
lines, interrupted by bends. Between two bends, they have
an identical slope 1 (i.e., �max � Pn�). The factor of
proportionality Pn varies with n, causing a different offset.
The �k achieve their maxima at the PHT and images
thereof (see Fig. 5 of [21] for a very instructive illustra-
tion). At the nth image, a perturbation at the PHT grows
like [21]
25060
Pn �
Xn�1

i�0

���������
Yn�i

j�1

fDf
fi�1�j�x��geme
n�i
f

j�x��

����������1; (2)

where f�x� is the dynamics of the system at x, Df�x� the
Jacobian, and eme

n�i
f
j�x�� the most expanding unit vector

at fj�x� under the application of Dfn�i�x�. This factor
sums up all the maximal stretching factors of the PHT
and its images up to the nth one. Typically, Pn > Pm for
n > m, implying that the distance from the attractor in-
creases with the number of images. However, because
higher images are folded back on the attractor, other parts
of the attractor instead of an iteration of the PHT come
closer to the noisy trajectory as the noise level is incre-
mented. This results in a saturation of the maximum dis-
tance, which produces a bend. In turn, when the noise
strength is further augmented, �max switches to the next
lower image of the PHT, again initiating a regime of linear
growth, and so on.

In Fig. 1, the sequences 4 ! 3 ! 2 for set (i) and 2 ! 1
for set (ii) can be seen. For set (ii), the offsets from the
numerics of Fig. 1 for n � 1; 2 are 8.3, 9.5 (solid lines),
while Eq. (2) yields Pn � 8:2; 9:5, a very good agreement.
Set (i) for n � 2; 3; 4 gives 15, 17, 34 from Fig. 1 (solid
lines), whereas Eq. (2) results in Pn � 13:4; 16; 34, also a
reasonably good agreement. The values for lower images
of the PHT (i.e., higher noise) fit slightly worse. However,
the matching can be improved by using the full dynamics
instead of the linearized Eq. (2), since nonlinear effects
play an increasing role for larger noise levels. By doing
this, one gets 14.5, 16.5, 34, again in good accordance.
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FIG. 2. Maximum distance �max versus noise level � for the
Ikeda and the Holmes maps, with the parameters (Ikeda) a �
0:9, b � 0:9, � � 0:3, and � � 6:0 (circles) and set (iii) a �
0:01, b � 2:78, and c � 1:56 (squares). For each noise strength,
5� 109 iterations have been used. The inset shows the average
h�qi1=q, q � 1; 10, with Gaussian noise for Ikeda (circles) and
set (iii) (squares). 109 iterations for each noise level have been
averaged over.
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To provide a better basis for the comparison with global
stability, we calculate the averaged moments of the dis-
tance h�qi1=q � 
1N

PN
k�1��k�

q�1=q using Gaussian white
noise, with h�ii � 0 and h�i; �ji � �2�ij. This is shown
in Fig. 1, inset, for q � 1; 10. The corresponding moments
for set (i) are for all q above the ones of set (ii), more
distinctive for higher q. The same applies for h�qi1=q with
bounded noise (not shown). Here, in the limit q ! 1, the
maximum distance is recovered h�qi1=q ! �max.

Global stability is evaluated with the Hamiltonian theory
of large fluctuations, solving a variational equation for the
MPEP [11–13], which provides the action S � 1

2 �PN
n�1 �

T
n�n, with �n the optimal fluctuations. The mean

first exit time is then given by h�i � exp
 S
�2�. The MPEP

starts at the preimages of the PHT, leaves the attractor close
to the PHT, and moves along their images towards the
saddle point on the basin boundary [14]. Employing this
scheme, one obtains for set (i) S � 0:015 and for set (ii)
S � 0:01, meaning now that set (i) is globally more stable
than set (ii). We stress that this leads, e.g., for a noise value
of �2 � 0:001, to an amplification of h�i by a factor of
exp
0:005

�2 � � 148; it is therefore no small effect.
These opposing stability properties establish our main

result. The Holmes map (as a typical example of a NCA) is
with set (i) of parameters locally less stable than with set
(ii); i.e., the maximum distance �max is larger, but globally
more stable; i.e., the escape energy and consequently the
mean first exit time are larger.

Next we demonstrate that this phenomenon can be much
more pronounced when comparing two NCAs originating
from different dynamical systems. For that purpose, we
introduce the Ikeda map [26]

z n�1 � a� bzn exp
�
i��

i�

1� jznj2

�
� �n; (3)

where zn � xn � iyn. We fix the parameters at a � 0:9,
b � 0:9, � � 0:3, and � � 6:0, which results in a NCA.
We compare this NCA with the one obtained for the
Holmes map with the parameter set (iii) a � 0:01, b �
2:78, and c � 1:56. Both attractors are once more normal-
ized in the two ways explained above, with E � 2:1 and
�escape � 0:1 [28]. The maximum distance is depicted in
Fig. 2. The features are more striking than in the previous
example; �max differs, for instance, for � � 10�4, by 1
order of magnitude. Furthermore, the scenario of jumping
from one image of the PHT to the next one happens for the
Ikeda map more frequently. For the lowest noise level
considered, the maximum distance occurs at the sixth
image of the PHT.

For set (iii) of the Holmes map, the numerical offsets of
Fig. 2 (solid lines) come about as 8.2, 11 for the images
n � 1; 2 of the PHT. Equation (2) results in Pn � 8; 11:25,
agreeing extremely well. The Ikeda map gives for n �
2; 3; 4; 5; 6 the numerical values 10, 33, 53, 95, 225, re-
spectively, while evaluated with Eq. (2) produces Pn �
25060
8; 22; 50; 96; 247. Taken into account that on the one hand
for large images of the PHT the maximal distance is
numerically hard to observe, as several subsequent optimal
fluctuations are needed to achieve it, and on the other hand
for low images the noise is already so large as to cause
nonlinear effects, the correspondence is tolerably good.

In the inset of Fig. 2, the averaged distances with
Gaussian noise h�qi1=q; q � 1; 10 are displayed. For small
q the Holmes map is here above the Ikeda map. This is
rooted in the fact that the unstable manifold of the Ikeda
map is more curved at the PHT and their images. Hence,
the average exhibits less of the maximal possible expan-
sion. However, for larger q (q � 10 in the graph), the
average is above for all noise levels. Again, the same holds
for h�qi1=q and bounded noise (not shown).

Global stability analysis, as before, entails for the Ikeda
map S � 0:025 and for the parameter set (iii) of the
Holmes map S � 0:007. Consequently, for the selected
parameters, the Ikeda map is globally much more stable
than the Holmes map, while it is locally much less stable,
which is caused by the higher images of the PHT having
larger expansion factors [Eq. (2)] and at the same time
weaker folding back to the attractor. Both effects are most
pronounced in the relevant low noise limit. The Ikeda map
is globally more stable by a factor of exp
0:018�2 �. The
amplification becomes huge for small noise (e.g., 6:5�
107 for �2 � 0:001) and is easily measurable. This estab-
lishes that the phenomenon of opposite stability properties,
when comparing NCAs originating from different dynami-
cal models, can be observed in an even more striking
manner.
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We have confirmed this counterintuitive phenomenon
also when comparing the Hénon map with both the Ikeda
and the Holmes maps, that way corroborating our findings,
which we claim to be a general feature of NCAs.

In the present work, we were not concerned with the
overall scaling of �max, only with the fact that one curve
lies above another, thus implying being locally less stable.
In [22], however, it was claimed that the scaling is �max �
��, where � � 1=D1, with D1 the information dimension
of the attractor. The agreement between this value and our
very accurate numerics is not too good, though [29]. This
discrepancy is caused by the fact that in the derivation of
the scaling in [22] not Pn from Eq. (2) was used, but the
positive Lyapunov exponent, which usually has a smaller
value. Thus, in general, 1=D1 can be regarded only as a
rough estimate for �. The question of an exact scaling
exponent will be treated in [30].

As our findings can have an huge effect on the maximum
distance and the average escape time, they have also rele-
vance for experiments, since one cannot simply and
straightforwardly conclude the behavior of one of the
stability types by measuring the other.
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