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We show how to construct a near deterministic CNOT gate using several single photons sources, linear
optics, photon number resolving quantum nondemolition detectors, and feed forward. This gate does not
require the use of massively entangled states common to other implementations and is very efficient on
resources with only one ancilla photon required. The key element of this gate is nondemolition detectors
that use a weak cross-Kerr nonlinearity effect to conditionally generate a phase shift on a coherent probe if
a photon is present in the signal mode. These potential phase shifts can then be measured using highly
efficient homodyne detection.
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In the past few years we have seen the emergence of
single photon optics with polarization states as a realistic
path for achieving universal quantum computation. This
started with the pioneering work of Knill, Laflamme, and
Milburn (KLM) [1] who showed that with only single
photon sources, detectors, and linear elements such as
beam splitters, a near deterministic CNOT gate could be
created with the use of significant but polynomial resour-
ces. With this architecture for the CNOT gate and trivial
single qubit rotations, a universal set of gates is hence
possible and a route forward for creating large devices
can be seen. Since this original work, there has been
significant progress both theoretically [2–6] and experi-
mentally [7–9], with a number of CNOT gates actually
demonstrated.

Much of the theoretical effort has focused on determin-
ing more efficient ways to perform the controlled logic.
The standard model for linear logic uses only [1] single
photon sources, linear optical elements including feed
forward, photon number resolving single photon detectors,
and it has been shown by Knill [4] that the maximum
probability for achieving the CNOT gate is 3=4. While these
upper bounds are not thought to be tight, with the best
success probabilities for the CNOT gate being 2=27 [10], it
does indicate that near deterministic gates are not possible
using only the above resources and strategy. These gates
can be made efficient using the ’’standard’’ optical tele-
portation tricks which require the use of massively en-
tangled resources. Are there other natural ways to
increase the efficient of these gate operations? Franson
et al. [2] showed that if you can increase your allowed
physical resources to include maximally entangled two
photon states, then the CNOT gate can have its probability
of success boosted to 1=4, though this is still far below the
3=4 maximum. Alternatively it is possible to use single
photons for the cluster state method of one way quantum
computation [5,6]. This can dramatically decrease the
number of single photons sources required to perform a
CNOT gate [from up to 10 000 for KLM logic to on average
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45 Bell pairs (90 single photons) for the cluster ap-
proaches]. The overhead here in single photon sources is
large (but polynomial and hence still efficient in a sense).
Can we, however, build near deterministic (or determinis-
tic) linear optics gates with a low overhead for sources and
detectors by relaxing the constraints in the standard model?

There are several options here: we can change the way in
which we encode our information (from polarization en-
coded single photon qubits) or the mechanism by which we
condition and detect them. There have been schemes by
Yoran and Reznik [11] that encode their information in
both polarization and which path. This encoding allows a
deterministic Bell state measurement but the basic gate
operations are still relatively inefficient. Alternatively one
could encode the information in coherent states of light as
proposed by Ralph et al. [12]. A key issue here becomes
the creation and detection of superpositions of coherent
states. If we want to maintain encoding our information in
polarization states of light, what else is possible? The main
architecture freedom we have left to change are the single
photon detectors. We could move to nondestructive quan-
tum nondemolition detectors (QND) which would have the
potential available of being able to condition the evolution
of our system but without necessarily destroying the single
photons [13–15]. They can also resolve one photon from a
superposition of zero and two. QND devices are generally
based on cross-Kerr nonlinearities. Historically these re-
versible nonlinearities have been extremely tiny and un-
suitable for single photon interactions but recently giant
Kerr nonlinearities have become available with electro-
magnetically induced transparency (EIT) [16]. It is cur-
rently not clear whether these nonlinearities are sufficient
from the natural implementation of single photon-single
photon quantum gates; however, they can be used for QND
detection where we require a single photon-large coherent
beam interaction. Here the nonlinearity strength needs to
be sufficient only for a small phase shift to be induced onto
a coherent probe beam (which is distinguishable from the
original probe) [17].
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FIG. 1 (color online). Schematic diagram of a two qubit po-
larization QND detector that distinguishes superpositions and
mixtures of the states jHHi and jVVi from jHVi and jVHi using
several cross-Kerr nonlinearities and a coherent laser probe
beam j�i. The scheme works by first splitting each polarization
qubit into a which path qubit on a polarizing beam splitter. The
action of the first cross-Kerr nonlinearity puts a phase shift � on
the probe beam only if a photon was present in that mode. The
second cross-Kerr nonlinearity puts a phase shift 
� on the
probe beam only if a photon was present in that mode. After the
nonlinear interactions, the which path qubits are converted back
to polarization encoded qubits. The probe beam only picks up a
phase shift if the states jHVi and/or jVHi were present and
hence the appropriate homodyne measurement allows the states
jHHi and jVVi to be distinguished from jHVi and jVHi. The
two qubit polarization QND detector is a parity checking device.
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Now that we have decided to use QND detection for
linear optical quantum computation we need to investigate
its effect on the CNOT gates and this is the key purpose of
this Letter. We could investigate each of the known gates in
turn but we will focus on the Franson’s 3 photon CNOT gate
[7], the reason being that it requires fewer physical resour-
ces [18]. We will show that a near deterministic CNOT gate
can be performed with such QND detectors without de-
stroying the ancilla photon, provided feed forward is avail-
able. More generally we will show that for a n qubit circuit,
the number of single photon sources requires scales as
n� 1. The extra photon is, however, not destroyed in the
computation and is left at the end. It is not consumed in the
computation. This approach can also be applied to achieve
cluster state computing or computing by measurement
alone [5,6].

Before we begin our detailed discussion, let us first
consider the photon number QND measurement using a
cross-Kerr nonlinearity, which has a Hamiltonian of the
formHQND � 	h�ays asa

y
pap where the signal (probe) mode

has the creation and destruction operators given by ays ; as
(ayp; ap), respectively, and � is the strength of the nonline-
arity. If we consider the signal state to have the form j i �
c0j0is � c1j1is with the probe beam initially in a coherent
state j�ip, then the cross-Kerr interaction causes the com-
bined signal-probe system to evolve as

Uckj isj�ip � eiHQNDt= 	h�c0j0is � c1j1is�j�ip

� c0j0isj�ip � c1j1isj�e
i�ip; (1)

where � � �twith t being the interaction time. We observe
immediately that the Fock state jnai is unaffected by the
interaction but the coherent state j�ci picks up a phase shift
directly proportional to the number of photons na in the
jnai state. For na photons in the signal mode, the probe
beam evolves to j�eina�ip. Assuming ��� 1, a measure-
ment of the phase of the probe beam (via homodyne-
heterdyne techniques) projects the signal mode into a
definite number state or superposition of number states.
The requirement ��� 1 is interesting, as it tells us that a
large nonlinearity � is not absolutely required to distin-
guish different jnai, even for zero, one, and two Fock
states. We could have � small but would then require �,
the amplitude of the probe beam large. This is entirely pos-
sible and means that we can operate in the regime �	 1,
which is experimentally more realizable. If this cross-Kerr
nonlinearity were going to be used directly to implement a
CPHASE-CNOT gate between single photons then we would
require � � �.

In this Fock state detection model we measure the phase
of the probe beam immediately after it has interacted with
the weak cross-Kerr nonlinearity. This is the regime where
the QND detector functions like the standard single photon
detector. However, if we want to do a more ’’generalized’’
type of measurement between different signal beams, we
could delay the measurement of the probe beam instead,
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having the probe beam interact with several cross-Kerr
nonlinearities where the signal mode is different in each
case. The probe beam measurement then occurs after all
these interactions in a collective way which could for
instance allow a nondestructive detection that distinguishes
superpositions and mixtures of the states jHHi and jVVi
from jHVi and jVHi. The key here is that we could have no
net phase shifts on the jHHi and jVVi terms while having a
phase shift on the jHVi and jVHi terms. We will call this
generalization a two qubit polarization parity QND detec-
tor and it is this type of detector that allows us to circum-
vent the Knill bounds.

Consider two polarization qubits initially prepared in
the states j�1i � c0jHia � c1jVia and j�2i � d0jHib �
d1jVib. These qubits are split individually on polariz-
ing beam splitters (PBS) into spatial modes which then
interact with cross-Kerr nonlinearities as shown in Fig. 1.
The action of the PBS’s and cross-Kerr nonlinearities
evolve the combined system j�1ij�2ij�ip will evolve to
j iT ��c0d0jHHi�c1d1jVVi�j�ip�c0d1jHVij�e

i�ip�

c1d0jVHij�e
i�ip. We observe immediately that the jHHi

and jVVi pick up no phase shift and remain coherent with
respect to each other. The jHVi and jVHi pick up opposite
sign phase shift � which could allow them to be distin-
guished by a general homodyne-heterodyne measurement.
However, if we choose the local oscillator phase�=2 offset
from the probe phase (we will call this an X quadrature
measurement), then the states j�e�i�ip can not be distin-
guished [19]. More specifically, with � real, an X homo-
dyne measurement conditions j iT to

j XiT�f�X;�
�c0d0jHHi�c1d1jVVi�

�f�X;�cos�
�c0d1ei��X
jHVi

�c1d0e

i��X
jVHi�; (2)
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where f�x;�
 � exp�
 1
4 �x
 2�
2�=�2�
1=4 and ��X
 �

�x sin�
 �2 sin2��Mod2�
. We see that f�X;�
 and
f�X;�cos�
 are two Gaussian curves with the midpoint
between the peaks located at X0 � ��1� cos�� and the
peaks separated by a distance Xd � 2��1
 cos��. As long
as this difference is large ��2 � 1, then there is little
overlap between these curves. Hence for X > X0,

j X>X0
iT � c0d0jHHi � c1d1jVVi; (3)

while for X < X0,

j X<X0
iT � c0d1e

i��X
jHVi � c1d0e

i��X
jVHi: (4)

We have used the approximate symbol ( � ) in these
equations as there is a small but finite probability that the
state (3) can occur for X < X0. The probability of this error
occurring is given by Perror �

1
2 �1
 Erf�Xd=2

���

2
p

�
 which
is less than 10
5 when the distance Xd � ��2 > 9. This
shows that it is still possible to operate in the regime of
weak cross-Kerr nonlinearities, �	 �.

The action of this two-mode polarization nondemolition
parity detector is now very clear; it splits the even parity
terms (3) nearly deterministically from the odd parity cases
(4). This is really the power enabled by nondemolition
measurements and why we can engineer strong nonlinear
interactions using weak cross-Kerr effects. Above we have
chosen to call the even parity state fjHHi; jVVig and the
odd parity states fjHVi; jVHig, but this is an arbitrary
choice primarily dependent on the form-type of PBS
used to convert the polarization encoded qubits to which
path encoded qubits. Any other choice is also acceptable
and it does not have to be symmetric between the two
qubits.

It is also interesting to look at the X < X0 solution given
by (4). We observe immediately that this state is dependent
on the measured X homodyne value and hence the state is
conditioned dependent on our measurement result X.
However, simple local rotations using phase shifters de-
pendent on the measurement result X can be performed via
a feed-forward process to transform this state to
φ(X)σx
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FIG. 2 (color online). Schematic diagram of a two polarization
qubit entangling gate. The basis of the scheme uses the QND-
based parity detector described in Fig. 1. If we consider that the
input state of the two polarization qubit is jHHi � jHVi �
jVHi � jVVi then after the parity gate we have conditioned on
an X homodyne measurement either the state jHHi � jVVi or
ei��X
jHVi � e
i��X
jVHi where ��X
 is a phase shift depen-
dent on the result of the homodyne measurement. A simple
phase shift achieved via classical feed forward then allows this
second state to be transformed to the first.
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c0d1jHiajVib � c1d0jViajHib which is independent of X.
These transformations are very interesting as it seems
possible with the appropriate choice of c0; c1 and d0; d1
to create arbitrary entangled states near deterministically.
For instance, if we choose d0 � d1 � 1=

���

2
p

, then our
device outputs either the state c0jHHi � c1jVVi or
c0jHVi � c1jVHi. A simple bit flip on the second polar-
ization qubit transforms it into the first. Thus our two mode
parity QND detector can be configured to act as a near
deterministic entangler (see Fig. 2). This gate allows us to
take two separable polarization qubits and efficiently en-
tangle them (near deterministically). If each of our qubits
are initially jHi � jVi then the action of this entangling
gate is to create the maximally entangled state jHHi �
jVVi. Generally it was thought that strong nonlinearities
are required to do this near deterministically; however, our
scheme here is using only weak nonlinearities �	 �. This
gate is critical and forms the key element for our efficient
Franson CNOT gate. It can also obviously be used to gen-
erate maximally entangled state required for several of the
other CNOT implementations.

Now let us move our attention to the construction of the
CNOT gate (depicted in Fig. 3). This is the analogue of the
Franson CNOT gate from [7] but with the key PBS and 45-
PBS replaced with fH;Vg and fD � H � V; 	D � H 
 Vg
two polarization qubit entangling gates. Franson’s photon
number resolving detectors have also been replaced with
single photon number resolving QND detectors. Consider
an initial state of the form �c0jHic � c1jVic� � �jHi �
jVi� � �d0jHit � d1jVit�. The action of the left-hand side
entangler evolves the system to

�c0jHHi � c1jVVi� � �d0jHit � d1jVit�: (5)

Now the action of the 45-entangling gate (where the PBS in
the original gate have been replaced with 45-PBS’s) trans-
forms the state to fc0jHi 
 c1jVig�d0 
 d1
j 	D; 	Di �
fc0jHi � c1jVig�d0 � d1
jD;Di where for the X < X0

measurement we have performed the usual phase correc-
tion, bit flip, and an addition sign change jVi ! 
jVi on
the first qubit. The second mode is now split on a normal
fH;Vg PBS and a QND photon number measurement
performed. A bit flip is performed if a photon is detected
in the V mode. The final state from these interactions and
CNOT Gate

Entangler Entangler 
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  classical  
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FIG. 3 (color online). Schematic diagram of a near determi-
nistic CNOT composed of two polarization qubit entangling gates
(one with PBS in the fH;Vg basis and one with PBS in the fD; 	Dg
basis), one ancilla signal photon jHi � jVi, feed-forward ele-
ments, and four single photon resolving QND detectors.
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feed-forward operations [20] is

c0d0jHHi � c0d1jHVi � c1d0jVVi � c1d1jVHi; (6)

which is the same state obtained by performing a CNOT

operation on the state �c0jHic � c1jVic� � �d0jHit �
d1jVit�. This shows that our QND-based gates have per-
formed a near deterministic CNOT operation. The core
element of this gate is the two qubit polarization parity
QND detector which engineers a two polarization qubit
interaction via a strong probe beam. At the heart of this
detector are weak cross-Kerr nonlinearities that make it
possible to distinguish subspaces of basis states from
others which is not possible with convenient destructive
photon counters. It is this that allows us to exceed the Knill
bounds presented in [4]. From a different perceptive our
two mode QND entangling gate is acting like a fermonic
polarizing beam splitter; that is, it does not allow the
photon bunching effects. Without these photon bunching
effects simple feed-forward operations allows our overall
CNOT gate to be made near deterministic. This represents a
huge saving in the physical resources to implement single
photon quantum logic. For the CNOT operation, only one
extra ancilla photon is needed beyond the control and
target photons to perform the gate operation in the near
deterministic fashion. In fact, it is straightforward to ob-
serve that if we want to do an n qubit computation (with
number of one and two qubit gates), only n� 1 single
photon sources would be required in principle.

The resources required to perform this QND-based CNOT

gate as presented here are: three single photon sources (two
to encode the control and target qubits and one ancilla), six
weak cross-Kerr nonlinearities, two coherent light laser
probe beams and homodyne detectors, plus basic linear
optics elements to convert polarization encoded qubits to
spatial coding ones and perform the feed forward. The
single photon ancilla is not consumed in the gate operation
and can be recycled for further use. This compares with
potentially thousands of single photon sources, detectors,
and linear optical elements to implement the original KLM
gate. It is possible to construct this near deterministic CNOT

with fewer cross-Kerr nonlinearities (potentially as few as
two but recycling them) but as a cost of more feed-forward
operations. Finally we should discuss the size of the weak
cross-Kerr nonlinearity required. Previously we have
specified a constraint that ��2 � 9. Thus for realistic
pumps with mean photon number per pulse on the order
of 1012 (corresponding to �� 106), a weak nonlinearity of
the order of � � 3� 10
2 should be sufficient to satisfy
��2 � 9. While this is still a technological challenge, it is
likely to be achievable in the near future and really shows
the potential power of weak (but not tiny) cross-Kerr
nonlinearities. Strong nonlinearities are not a prerequisite
to be able to perform quantum computation.
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To summarize, we have shown in this Letter that weak
cross-Kerr nonlinearities can be used to construct near
deterministic CNOT gates with far fewer physical resources
than other linear optical schemes. This has enormous
implementations for the development of single photon
quantum computing and information processing using ei-
ther the convenient models or cluster state techniques. It
can be immediately applied to optical cluster state com-
puter allowing a significant reduction in the physical re-
sources. At the core of the scheme are generalized QND
detectors that allow us to distinguish subspaces of the basis
states rather than all the basis states which occurs with the
classic photon counters. The strength of the nonlinearities
required for our gate are orders of magnitude weaker than
those required to perform CNOT gates naturally between the
single photons. Such nonlinearities are potentially avail-
able today using doped optical fibers, cavity QED, and EIT.
We hope this work motivates the search for weak cross-
Kerr nonlinearities which now have applications beyond,
for instance, single photon number resolving detectors.
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