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By quantum calibration we name an experimental procedure apt to completely characterize an
unknown measurement apparatus by comparing it with a few other calibrated apparatuses. Here we
show how to achieve the calibration of an arbitrary measuring apparatus, by using it in combination
with a tomographer in a correlation setup with an input bipartite system. The method is robust to
imperfections of the tomographer, and works for practically any input state of the bipartite system.
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The calibration of measuring apparatuses is at the basis
of any experiment. Theory and experiment are unavoid-
ably interwoven, and the calibration procedure often
needs a detailed knowledge of the inner working of the
apparatus, especially at extreme precisions and sensitiv-
ities, where a quantum mechanical description is needed.
Here, the actual “observable” that is measured depends
crucially on the microscopic details of the apparatus, the
knowledge of which is needed to give a physical inter-
pretation to the measurement.

In a quantum mechanical description, the calibration
of a measuring apparatus corresponds to the knowledge
of its POVM (positive operator-valued measure [1]). It
gives the probability p(n) of any measurement outcome n
for arbitrary input state, via the Born rule

p(n) =TipP,]. (D

In Eq. (1) p is the density operator of the state on the
Hilbert space H of the system, and the POVM is given by
the set of operators {P,} on . To ensure that p(n) is a
probability, the POVM must satisfy the positivity and
normalization constraints P, =0, > P, = I.

The concept of POVM generalizes the familiar von
Neumann observable describing perfect measurements.
Here the probability of obtaining the outcome 7 is given
by p(n) = Klo,)|?, {lo,)} denoting a complete orthonor-
mal basis for H, ie., with POVM given by the one-
dimensional projectors P, = |0, ){0,|. The physical inter-
pretation of the measurement is given via a quantization
rule that associates a self-adjoint operator O to a classical
observable, |o,) being the eigenvector of O with eigen-
value o,. However, this concept of observable does not
cover many practical situations—e.g., phase estimation
[2,3], joint measurements of incompatible observables
[4,5], discrimination among nonorthogonal states [6,7],
informationally complete measurements [8], and trans-
mission of reference frames [9]—and here the POVM
description is needed. But then, in absence of a direct
physical interpretation of the measurement, we are faced
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with the problem of assessing the correct functioning of
the measuring apparatus.

Inferring the POVM of an apparatus through the theo-
retical description of its functioning leads to quite in-
volved derivations, based on different kinds of
approximations. The photocounter [10] is a paradigmatic
case: the number of photons claimed to be detected—
usually very uncertain—is typically inferred from the
cascading mechanism of the amplification process. The
calibration is given essentially in terms of quantum effi-
ciency and dark current (saturation effects generally cate-
gorize detectors into the major classes of ‘“‘linear” and
“single photon”). Even in a very simplified model, a
theoretical description accounting for the above features
is quite involved [11,12], and the resulting theoretical
calibration is exceedingly indirect.

The above scenario raises the following problem: is it
possible to calibrate a measuring apparatus—i.e., to de-
termine its POVM—with a purely experimental proce-
dure, e.g., by comparing the apparatus with few other
(previously calibrated) apparatuses [13]? In this Letter
we propose a method to determine a POVM experimen-
tally. The method uses the unknown apparatus in combi-
nation with a calibrated ‘“tomographer’” on a suitably
prepared bipartite system, as in Fig. 1, and the calibration
results from the analysis of the correlations of the out-
comes. (A tomographer is an apparatus that measures an
observable tunable in a complete set called quorum: more
details on quantum tomography will be given in the
following). The basic scheme of the method stems from
a previous method for the tomographic reconstruction of
quantum operations [14], and generalizes a popular cali-
bration scheme [15,16] designed to determine the quan-
tum efficiency of a photodetector. As will be shown in the
following, there is ample freedom in the choice of both
the input bipartite state and the tomographer. The joint
measurement must be repeated many times, analyzing the
measurement outcomes with a proper tomographic algo-
rithm [17,18]. The POVM calibration is approached in the
limit of infinitely many outcomes. For a finite set of data,
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77 state p,, at the tomographer conditioned by outcome n at
n the unknown measuring apparatus, namely
Z p(n,m) = p(n)p(mln) = p(n)Trlp,|b,)Xbyull  (3)

FIG. 1 (color online). Experimental setup to determine the
POVM of the unknown measurement apparatus A. The appa-
ratus A is used jointly with a tomographer on a bipartite system
prepared in a predetermined state R. The tomographer mea-
sures an observable B*¥) from the quorum {B®}, yielding result
m, whereas the unknown apparatus gives outcome n. The joint
outcomes (n, m) are then processed using a tomographic algo-
rithm, to finally obtain the POVM {P,} of A.

the reconstructed POVM will be affected by statistical
errors, which can be precisely estimated via the tomo-
graphic algorithm. The method works for generally
infinite-dimensional Hilbert space (yielding a finite num-
ber of POVM elements, corresponding to the actually
occurred outcomes).

The following simple example illustrates how the pro-
cedure works. Suppose we know that the apparatus mea-
sures an observable, but we do not know which one.
Denote it by the orthonormal basis {|o,)}. We can use
the maximally entangled input state |¥)=

4_ |i)li)/+/d in the space H ® T; T being the space
of the quantum system impinging into the tomographer.
The state can be equivalently written as |V) = ﬁ X
Z,d':l lo;)[07), (lo}) denotes the vector with the complex
conjugated coefficients of |o ;) with respect to the basis
{li)}). Then, the outcome n of the unknown measuring
apparatus conditions the state p,, = |o};){(0}| at the tomog-
rapher, and the POVM can be recovered using state
reconstruction.

We now present the general quantum calibration pro-
cedure. Let us fix one observable at the tomographer, and
denote it by {|5,,)}. Upon indicating by {P,} the POVM of
our measuring apparatus that we want to calibrate, the
Born rule (1) predicts that the outcome (n, m) of the joint
measurement will occur with probability

p(n,m) = Ti{(P, ® |b,,){b, )R], 2)

where R is the joint state of the two quantum systems, and
the POVM of the joint measurement is given by the tensor
product of the individual POVM’s. Upon rewriting the
joint probability in terms of the conditional probability
p(m|n) via Bayes’s rule, we conveniently introduce the

Upon evaluating the trace in Eq. (2) in two steps, i.e.,
plnm) =T 1o, )Xo, Tei (P, 0 DR |, (4

and by equating Egs. (3) and (4) for any possible vector
|b,,) (i.e., any possible observable), we have p,p(n) =
Tr,[(P, ® 1)R], namely

_ Tr[(P, ® 1)R]

P = m, p(n) =T (P, ® DR].  (5)

The POVM element P,, can be recovered from the con-
ditioned state p, as follows

P, = pm)R~(p,), (6)
by inverting the map
R (X) = Tr[(X ® DR], @)

where X denotes an operator on J . The map R depends
only on the input state R, which then must be known.
Hence we need a precalibration stage in which we deter-
mine the joint state R (this can be done via a joint
quantum tomography with two equal tomographers on
the input state R). Invertibility of the map R corresponds
to a so-called faithful state [14]. Since invertible maps are
a dense set, then almost any quantum state R is faithful.
Of course, when approaching a state corresponding to a
noninvertible map, some information on the POVM {P,,}
will be lost, corresponding to increasingly large statisti-
cal errors for some matrix elements of the operators P,
(inverting a linear map is clearly equivalent to inverting
an operator: for the reader who prefers operators to map,
an explicit connection between operators and maps is
given in Ref. [14]).

Once the inverse map R ~! has been calculated, we use
quantum tomography in order to recover p,. In short,
quantum tomography is a method to estimate the en-
semble average of an arbitrary (complex) operator X by
measuring a set of observables {BW}, called quorum,
which span the space of operators of the system (for
recent reviews on quantum tomography, see
Refs. [17,19]). Typical examples of quorums are the three
Pauli matrices o, oy, and o, for a qubit, or the set of
quadratures X, = 1(ae’® + ae™'¢) for a single mode of
the radiation field with annihilation and creation opera-
tors a and af, ¢ € [0, 7) playing the role of the observ-
able label within the quorum {X}. (X, is measured by a
homodyne detector at phase ¢ relative to the local oscil-
lator [17].) In short, the generic operator X is expanded as
X = S Ti[XxCWT]B®, {CW} denoting a dual set of the
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quorum {B®W} (the sum is replaced by an integral for
continuous k), and the quantity Tr[XC®1] is evaluated
analytically. Notice that one can remove the effects of
noise at the tomographer if the noise map JV is invertible,
by writing X = 3, Tt N ~!(X)CRTIN(BW).

For the tomographic reconstruction we can either: (a)
average over the quorum, e.g., estimate (X) via the en-
semble averages of the quorum observable as (X) =
S Ti[XCWTYB®) (the estimation of the density matrix
element p;; corresponding to X = [7)]); (b) we can use
the maximum likelihood approach [18]. In this case, the
estimated POVM elements P, will maximize the proba-
bility Tr[(P,, ® [bXNb®|)R] of getting outcome n on the
unknown measuring apparatus and m for the kth observ-
able B® of the quorum, in the joint measurement P, ®
Ibﬁ,lf)beff)l on the predetermined input state R.
Equivalently, one can maximize the logarithm of this
quantity and consider simultaneously all the N joint mea-
surement outcomes, corresponding to maximizing the
likelihood functional

N
Lqpy = ZlogTr[(Pn, ® Ibi,’ff)><b5,’;:)|)R} (8)
i=1

under the constraints P, = 0 and ), P, = I. Other prior
knowledge about P, can be easily incorporated by adding
further constraints. Moreover, we can account for a
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FIG. 2 (color online). Calibration of the photodetector in
Fig. 3 with i, = 80% and v = 1, using a twin beam with { =
0.88 (see text), and homodyne tomography with quantum
efficiency 71, = 90%. The plots are the reconstruction of the
diagonal matrix elements (n|P;|n) of the detector POVM, from
a set of 5 X 10° computer-simulated data, using the averaging
strategy. The reconstructed POVM is at the middle of the error
bars, whereas the theoretical values, for comparison, are given
by the dashed lines.

known source of noise N at the tomographer, by replac-
ing the projector |b£,l§{)><b§,l,‘j)| in Eq. (8 with
N (5" Xbw).

The procedure to calibrate an unknown measurement
apparatus can be summarized in the following steps: (i)
(precalibration) Using two tomographers, reconstruct the
input joint state R. Check whether R is faithful. (ii) (joint
measurements with the unknown apparatus) Replace one
tomographer with the unknown detector, and collect N
pairs of outcomes {n;, m;}, i =1,.., N in a set of joint
measurements with randomly selected observable B%?) in
the quorum. (iii) (Data analysis) From the experimental
data collect the probability p(n) of the outcome n at the
unknown measurement apparatus, and then estimate the
POVM {P,} using one of the above tomographic strat-
egies—either the averaging or the maximum likelihood.
In the first case evaluate the density matrix p,, of the state
impinging in the unknown measuring apparatus, and then
use Eq. (6) to recover the POVM. In the second case,
evaluate the POVM directly by maximizing the likeli-
hood functional £ in Eq. (8) on the given set of experi-
mental data, with the state R obtained at step (i).

In Fig. 2 we present a simulated experiment of the
quantum calibration of a photocounter using homodyne
tomography with the averaging strategy. The model of the
calibrated detector is given in Fig. 3. Since the resulting
POVM is diagonal in the photon-number basis, we limit
the reconstruction to the diagonal elements only. As input
state R we use a twin beam state from parametric down-
conversion of vacuum, of the form o« ¥ &"|m) ® |m),
where ¢ is related to the amplification gain and |m)
denotes the eigenstate of the photon number. One can
easily check that the twin beam is faithful for all & #
0. As a typical imperfection of the tomographer, we
consider nonunit quantum efficiency 7, for the homo-
dyne detector (the noise map can be inverted as long as
n, > % [17]). Since we reconstruct only the diagonal part
of the POVM, one can easily show that there is no need to
know the homodyne phase ¢, which, however, must be
randomly distributed (the knowledge of ¢ would allow to
recover also the null off-diagonal elements of the POVM).

ST 7

FIG. 3 (color online). Model of the photodetector calibrated
in the simulations of Figs. 2 and 4. Nonunit quantum efficiency
7, and dark current with mean photon number v are equivalent
to preceding an ideal detector by a beam splitter of trans-
missivity 7, mixing the input signal with a thermal mode with
v average photons.
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FIG. 4 (color online). The same as in Fig. 2, but using the
maximum likelihood method. Here only 5 X 10* simulated
data are used. The error bars are obtained by standard boot-
strapping techniques over a virtual repetition of 50 experi-
ments. Notice how the result is statistically less noisy than that
in Fig. 2, even for a 1072 smaller set of data.

In Fig. 4 we present the same calibration, but using the
maximum likelihood strategy. The convergence of the
maximum-search algorithm is assured by the strict con-
vexity of the likelihood functional £ over the space of
diagonal POVM’s (the convergence speed, however, can
be very slow in practice). In the simulation we used a
blend of sequential quadratic programming routines (to
perform the constrained maximization) along with
expectation-maximization techniques [18]. By compar-
ing Figs. 2 and 4 we can see how the maximum likelihood
estimation is more statistically efficient (i.e., fewer data
are needed to achieve the same statistical error) than the
averaging strategy [20], and, in addition, the maximiza-
tion of the likelihood recovers all the POVM elements
simultaneously. On the other hand, compared to the aver-
aging strategy, the maximum likelihood approach has the
drawback of being biased, since one needs to put a cutoff
to the Hilbert space dimension of the tomographic recon-
struction and/or to the cardinality of the POVM. Both
simulated experiments use realistic parameters and are
feasible in the lab with current technology (see, for
example, Refs. [21-24]). The major challenge of a real
experiment remains the matching of modes between pho-
tocounter and homodyne detector, also ensuring that the
detected modes are the same of the precalibration stage.

We acknowledge financial support by INFM PRA-
2002-CLON and MIUR for Cofinanziamento 2003. P. L.
acknowledges partial support from ATESIT project IST-
2000-29681.

*Electronic address: dariano@unipv.it
Also at Center for Photonic Communication and
Computing, Department of Electrical and Computer
Engineering, Northwestern University, Evanston, IL
60208, USA
Electronic address: maccone @unipv.it
*Electronic address: lopresti @unipv.it
SURL: http://www.qubit.it
[1] C.W. Helstrom, Quantum Detection and Estimation
Theory (Academic, New York, 1976).
[2] Special issue on Quantum Phase and Phase Dependent
Measurements, [Phys. Scr. T48, (1993)].
[3] G.M. D’Ariano, C. Macchiavello, and M. E Sacchi, Phys.
Lett. A 248, 103 (1998).
[4] E. Arthurs and J. L. Kelly, Bell Syst. Tech. J. 44, 725
(1965).
[5] J.P. Gordon and W.H. Louisell, Physics of Quantum
Electronics (McGraw-Hill, New York, 1966), p. 833.
[6] H.P Yuen, R.S. Kennedy, and M. Lax, IEEE Trans. Inf.
Theory 21, 125 (1975).
[7] A. Chefles, Phys. Rev. A 64, 062305 (2001).
[8] G.M. D’Ariano, P. Perinotti, and M. E Sacchi, Europhys.
Lett. 65, 165 (2004).
[9] G. Chiribella, G. M. D’Ariano, P. Perinotti, and M. F.
Sacchi, Phys. Rev. Lett. 93, 180503 (2004).

[10] L. Mandel and E. Wolf, Optical Coherence and Quantum
Optics (Cambridge University Press, Cambridge, 1995).

[11] P L. Kelley and W.H. Kleiner, Phys. Rev. 136, A316
(1964).

[12] L. Mandel, Proc. Phys. Soc. London 72, 1037 (1958); 74,
233 (1959).

[13] J. Fiurasek, Phys. Rev. A 64, 024102 (2004).

[14] G.M. D’Ariano and P. Lo Presti, Phys. Rev. Lett. 86,
004195 (2001); 91, 047902 (2003).

[15] D.N. Klyshko, Sov. J. Quantum Electron. 10, 1112
(1980).

[16] A. Migdall, R. Datla, A. Sergienko, J.S. Orszak, and
Y. H. Shih,Appl. Opt. 37, 3455 (1998).

[17] G.M. D’Ariano, School “E. Fermi” on Experimental
Quantum Computation and Information, edited by E
De Martini and C. Monroe (IOS Press, Amsterdam,
2002), p. 385.

[18] K. Banaszek, G. M. D’Ariano, M. G. A. Paris, and M. E
Sacchi, Phys. Rev. A 61, 010304(R) (2000).

[19] M. Paris and J. Rehacek Eds., Quantum State Estimation,
Lecture Notes in Physics Vol. 649 (Springer, Berlin,
2004).

[20] This is true in general on theoretical-statistics grounds,
since when the optimal estimator (i.e., the one achieving
the Cramer-Rao bound) exists, then it coincides with the
maximum likelihood estimator.

[21] G.M. D’Ariano, M. Vasilyev, and P. Kumar, Phys. Rev. A
58, 636 (1998).

[22] A.L. Lvovsky and S.A. Babichev, Phys. Rev. A 66,
011801(R) (2002).

[23] J. Wenger, R. Tualle-Brouri, and P. Grangier, Opt. Lett.
29, 1267 (2004).

[24] A. Zavatta, S. Viciani, and M. Bellini, Phys. Rev. A 70,
053821 (2004).

250407-4



