
PRL 93, 250406 (2004) P H Y S I C A L R E V I E W L E T T E R S week ending
17 DECEMBER 2004
Vortex Molecules in Coherently Coupled Two-Component Bose-Einstein Condensates

Kenichi Kasamatsu,1 Makoto Tsubota,1 and Masahito Ueda2

1Department of Physics, Osaka City University, Sumiyoshi-Ku, Osaka 558-8585, Japan
2Department of Physics, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551, Japan

(Received 6 June 2004; revised manuscript received 29 October 2004; published 16 December 2004)
0031-9007=
A vortex molecule is predicted in rotating two-component Bose-Einstein condensates whose internal
hyperfine states are coupled coherently by an external field. A vortex in one component and one in the
other are connected by a domain wall of the relative phase, constituting a ‘‘vortex molecule,’’ which
features a nonaxisymmetric (pseudo)spin texture with a pair of merons. The binding mechanism of the
vortex molecule is discussed based on a generalized nonlinear sigma model and a variational ansatz. The
anisotropy of vortex molecules is caused by the difference in the scattering lengths, yielding a distorted
vortex-molecule lattice in fast rotating condensates.
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Topological defects appear in cross-disciplinary sub-
fields of physics as long-lived excitations, constrained by
the topology of the order parameter [1]. A prime example
is quantized vortices, which play a key role in the under-
standing of superfluidity [2]. When a system has a multi-
component order parameter, it is possible to excite various
exotic topological defects which have no analogue in
systems with a single-component order parameter.

An atomic-gas Bose-Einstein condensate (BEC) offers
an ideal testing ground to investigate such topological
defects, because almost all parameters of the system can
be controlled to the extent that state engineering is pos-
sible. Because alkali atoms have a spin degree of freedom,
multicomponent BECs can be realized if more than one
hyperfine spin state is simultaneously populated [3,4]. A
quantized vortex and a vortex lattice in BECs have been
created experimentally by several techniques [5–8]. The
methods reported in Refs. [5,6] utilized internal degrees of
freedom of BECs, creating unconventional vortices de-
scribed by multicomponent order parameters. The struc-
ture of single vortex states in systems with multicomponent
order parameters was investigated in Refs. [9–11]. In
addition, it has been predicted theoretically that fast rotat-
ing two-component BECs exhibit a rich variety of uncon-
ventional vortex structures [11–13].

In this Letter, we study the vortex structure of rotating
two-component BECs whose internal states are coupled
coherently by an external driving field. This coupling can
be achieved experimentally as reported in Refs. [14,15],
where Rabi oscillations between the two components were
observed. If the strength of the coupling drive is increased
gradually from zero and its frequency is gradually ramped
to resonance, one can obtain a stationary state with a nearly
equal-weight superposition of the two states [15]. Here, we
study stationary states of two-component BECs with an
external rotation as well as internal coupling. The combi-
nation of these two effects enables us to explore a new
regime of rich vortex structures beyond the conventional
binary system [9,12,13,16]; the two components interact
not only through their mean-field interactions but also
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through the relative phase of the order parameters. We
find that such two-component BECs exhibit unique vortex
structures; a vortex in one component and one in the other
form a stable vortex-antivortex pair [17], i.e., a ‘‘vortex
molecule,’’ bound by a domain wall in the space of relative
phase. The pseudospin representation of the molecule re-
veals a nonaxisymmetric spin texture with a pair of merons
[18–20]. The internal coupling controls the binding force
of the vortex molecule and affects significantly the lattice
structure of vortices in fast rotating two-component BECs.

We consider two-component BECs of atoms with mass
m residing in two hyperfine states in a rotating frame with
rotation frequency � � �ẑ. The BECs are described by
the condensate wave functions �i (i � 1; 2). The equilib-
rium state of the system is obtained by minimizing the
energy functional
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In this work, we confine ourselves to the two-dimensional
problem. Here, we measure the length and energy in units
of bho �

��������������
�h=m!

p
and �h!, respectively, with a frequency !

of a harmonic trap; thus hi � �r2=2� r2=2��L̂z. The
atom-atom interactions are characterized by ui for intra-
component and u12 for intercomponent interactions. The
last term in Eq. (1) describes a coherent coupling induced
by an external field, which allows atoms to change their
internal state coherently [14,15]. Here !R is the Rabi
frequency and � is the detuning between the external field
and the atomic transition; in the following we set � � 0 for
simplicity. In this case, the total particle number (per unit
length along the z axis) N �

R
drfj�1j

2 � j�2j
2g R

dr�T is conserved. By renormalizing the wave function
as �i !

����
N

p
�i=bho, the atom-atom interactions are writ-
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ten as ui � 4�aiN and u12 � 4�a12N with the corre-
sponding s-wave scattering lengths ai and a12.

We first assume u1 � u2 � u12 � 1000 (a more general
case will be discussed later) to discuss the vortex state with
the external coupling and an appropriate rotating drive to
ensure stabilization of only one vortex in each component.
The minimization of the energy functional (1) is done
numerically by using the conjugate gradient method.
Figure 1(a) shows the equilibrium solution for !R �
0:02 and � � 0:15. Each component has one off-centered
vortex, which shifts from the other to reduce the over-
lapping area [see Fig. 2(a)]. For finite !R this nonaxisym-
metric vortex state is always energetically lower than the
axisymmetric one, which was observed in Ref. [5], in
which one circulating component surrounds a nonrotating
core of the other [9]. Also, the optimized relative phase
shows a unique structure as shown in Fig. 1(b). Here, the
central region is characterized by the configuration of a
vortex-antivortex pair; the vortex cores are connected by a
branch cut of the relative phase with a 2� phase difference
[21]. Thus, the two vortices attract each other, forming a
bound pair, i.e., a vortex molecule. As !R increases, the
size of the pair decreases as seen in Fig. 2(a). Beyond !R ’
3:0 the separation vanishes, where the locations of the
density nodes overlap despite the intercomponent repulsive
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FIG. 1 (color online). (a) The profile of the density j�1j
2 and

j�2j
2 (line contours) with � � 0:15 and !R � 0:02. (b) The

gray-scale plot of the relative phase ��r	 � �1 � �2. Arrows
show the direction of the circulation in the space of relative
phase around the vortices. (c) The vectorial representation of the
pseudospin S � ����=2 projected onto the x-y plane. The
locations of the defects are indicated by �� (with Sz � �ẑ=2)
and

N
(with Sz � �ẑ=2). (d) The contour plot of the topologi-

cal charge density q�r	 (the largest value at the center) and the
vectorial plot of the veff field.
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interaction; the internal coherent coupling induces an ef-
fective attractive interaction between the two components
[16].

An insight into the vortex molecule can be gained when
we describe the two-component BECs in terms of a pseu-
dospin [11,15]. By introducing a normalized spinor � �

��1�r	; �2�r	�T with j�1j
2 � j�2j

2 � 1 and writing �i �������������
�T�r	

p
�i�r	, we can define the spin vector as S�r	 �

����=2 with the Pauli matrix �; the modulus of the total
spin is jSj � 1=2. The vectorial representation of the spin
density (projected onto the x-y plane) is shown in Fig. 1(c).
The spins are oriented in the x direction everywhere except
in the central domain-wall region where they tumble rap-
idly by 2�. There exist two points corresponding to the
locations of vortices at which S is parallel to the z axis. The
spin field around the singularity with S � �ẑ=2 (S �
�ẑ=2) has a radial (hyperbolic) distribution, having
�Sx; Sy	 / ��x;�y	 [ / �x;�y	]. This texture is known
as a ‘‘radial-hyperbolic’’ pair of merons [22], which has
been discussed not only in the study of topological defects
in superfluid 3He [18] and a double-layer quantum Hall
system [19] but also in the semiclassical model of color
confinement in QCD [20].

To discuss the properties of a vortex molecule quantita-
tively, we rewrite Eq. (1) in terms of the pseudospin
variables as
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where we have introduced the effective velocity field in-
duced by spin textures
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FIG. 2 (color online). (a) The cross sections of the condensate
density along the y � 0 line (j�1j

2, solid curve; j�2j
2, dashed

curve; �T, dotted curve). (b) The total energy as a function of �
(the size of the meron pair) for � � 0. The inset shows the
separation 2dm between two vortices as a function of the Rabi
frequency !R for � � 0:15. The solid curve represents the result
obtained by the variational analysis with Eqs. (2) and (4) (dm �
2�) and the dots the numerical result.
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FIG. 3 (color online). The contour plots of the topological
charge density q�r	 and the vectorial plots of the veff field for
� � 0:15, !R � 0:02, c0 � 1000, and (a) c2 � 20 (antiferro-
magnetic), and (b) c2 � �20 (ferromagnetic). The inset shows
the corresponding density profiles.
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v eff �
r�

2
�

Sz
�S2x � S2y	

�SyrSx � SxrSy	 (3)

with the total phase � � �1 � �2, and three coupling
constants c0 � �u1 � u2 � 2u12	=4, c1 � u1 � u2, and
c2 � u1 � u2 � 2u12. Equation (2) describes a generalized
nonlinear sigma model for two-component BECs, which
allows us to obtain the solutions for topological excitations
such as ‘‘Skyrmions’’ or ‘‘merons’’ [19]. They are charac-
terized by the topological charge density q�r	 �
 !"S � �@!S	 � �@"S	=� � �r� veff	=2�, whose spatial
integral is the topological charge. Figure 1(d) shows the
profile of q�r	 together with the vector plot of the veff field.
Contrary to a conventional vortex, jveff j vanishes at the
center, reflecting a coreless vortex without a density dip in
the total density. The topological charge of this solution is
Q �

R
dr q�r	 � 1. The axisymmetry of both profiles is

reflected to the SU(2) symmetry associated with c1 �
c2 � 0. Then, the structure of the meron pair is equivalent
to an axisymmetric vortex state, i.e., a Skyrmion [11],
where both states are connected via overall spin rotation
with 90� [23]; according to our definition of S, the spin of
the Skyrmion points down along the z axis at the center and
rolls up continuously as it goes outward if the �1 compo-
nent has a vortex. The internal coupling works as a trans-
verse ‘‘magnetic’’ field that aligns the spin along the x axis.
Therefore, turning on !R makes a Skyrmion split into two
merons with the spin texture shown in Fig. 1(c) [19].

The pseudospin picture gives us a physical interpretation
of vortex-molecule binding by means of the internal cou-
pling. When c1 � c2 � 0, the pseudospin profiles of the
meron pair can be represented by the form

Sx �
1

2

r2 � 4�2e�%r2

r2 � 4�2e�%r2
; Sy �

�2�ye�%r2=2

r2 � 4�2e�%r2
; (4)

and Sz � �1=2� S2x � S2y	1=2, where � and % are the varia-
tional parameters that characterize the size of the meron
pair, i.e., the molecular size d2me

%d2m � 4�2 [see the top of
Fig. 2(a) for the definition of dm]. The problem becomes
simpler by assuming % � 0 so that Eq. (4) reduces to a
solution of the classical nonlinear sigma model [19].
Substituting S into Eq. (2) and putting � � tan�1 y

x�2� �

tan�1 y
x�2� , we obtain E �
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dr��r
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To see the !R dependence on the molecular binding, we
calculate the total energy E as a function of � in the case
without rotation [24]; the result is shown in Fig. 2(b). Here,
for a given ��� dm=2	 we calculate numerically �T that
minimizes E. For !R � 0 the energy decreases monotoni-
cally with �, which implies the repulsive interaction be-
tween two merons. Its dominant contribution comes from
25040
the second and third terms of Eq. (2), which are the
gradient energy of the pseudospin and the kinetic energy
of the veff field. Since the total density �T is fixed as the
Thomas-Fermi profile with an inverted parabola for the
moderate values of � except � < 0:15, where the vortex
core appears in �T as seen in Fig. 2(a), the energy con-
tribution of the other terms is almost constant. For finite
!R, there appears an energy minimum so that the two
vortices can form a bound pair, the value of � giving the
minimum decreases with !R. This binding originates from
a tension Td of the domain wall of the relative phase. The
binding energy can be estimated as �Tddm; for a homoge-
neous system Td � 8j�1j

2j�2j
2k=�T with the character-

istic domain size k�1 � �j�1jj�2j=2!R�T	
1=2 [21].

The energy minimum in Fig. 2(b) is not ensured to be
thermodynamically stable because the variational function
Eq. (4) does not describe the motion of the center of mass
of a vortex molecule. We performed the simulation of the
imaginary time propagation of the Gross-Pitaevskii equa-
tion derived from Eq. (1), and found that for � � 0 the
center of mass spirals out toward the edge of the conden-
sates because of the drift instability [25]. Therefore a
rotation is necessary to stabilize the vortex molecule ac-
tually. Figure 2(b) shows the !R dependence of the mo-
lecular separation 2dm for � � 0:15. The variational
analysis gives a good agreement with the numerically
obtained value for 2dm.

In a realistic situation, e.g., two-component BECs
studied in the JILA group [3], the coupling constants no
longer satisfy u1 � u2 � u12. Then, there appear a longi-
tudinal magnetic field c1 that aligns the spin along the z
axis and the spin-spin interaction c2 associated with Sz
(antiferromagnetic for c2 > 0 and ferromagnetic for c2 < 0
[13]) in Eq. (2). The structure of the vortex molecule for
c2 � �20 (c1 � 0) is shown in Fig. 3; the detailed effects
of those terms on the vortex molecule will be discussed
elsewhere. Then, the axisymmetry of the topological
charge and the velocity field of the vortex molecule is
6-3
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FIG. 4 (color online). The upper figures show the profiles of
the condensate density j�1j

2 and j�2j
2 and the lower ones the

relative phase for � � 0:80, !R � 0:2, and (a) c2 � 20 (anti-
ferromagnetic), (b) c2 � �20 (ferromagnetic). The centers of
mass of the molecules are linked by dashed lines. The bottom
inset shows the distribution of the topological charge within
[�3< x, y < 3].
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broken. For the antiferromagnetic (ferromagnetic) case,
the anisotropic vorticity is distributed parallel (perpendicu-
lar) to the molecular polarization.

As the rotation frequency is increased, a large number of
vortices are nucleated and form a lattice. When !R is
turned on, the vortices begin to form pairs and result in
the lattice of vortex molecules. For u1 � u2 � u12 (c1 �
c2 � 0) the vortex molecules exhibit an axisymmetric
feature, yielding a square lattice of meron pairs (equiva-
lently, a lattice of Skyrmions under the basis transforma-
tion of Ref. [23]). As !R increases further, the vortices of
one component overlap completely with those of the other,
forming a triangular lattice. If u1 � u2 � u12, however, the
vortex molecule is anisotropic as shown in Fig. 3, so that
the resultant state also exhibits a distorted lattice structure.
Typical examples are shown in Fig. 4, where (a) and (b)
correspond to the antiferromagnetic and ferromagnetic
cases, respectively. From the inset, the direction of the
ordering depends strongly on the distribution of the topo-
logical charge in each vortex molecule.

In conclusion, we have shown that an internal coherent
coupling between rotating two-component BECs brings
about a new effective ‘‘vortex-molecular’’ field that fea-
tures a (pseudo)spin texture with meron pairs. The size of
the vortex molecules can be controlled by tuning the
external coupling field. This will open further interesting
problems such as structural transitions and collective os-
cillations of the lattice of vortex molecules, and new
phenomena related with double-layer quantum Hall
physics.
25040
[1] L. M. Pismen, Vortices in Nonlinear Fields (Oxford
University Press, Oxford, 1999).

[2] R. J. Donnelly, Quantized Vortices in Helium II
(Cambridge University Press, Cambridge, 1991).

[3] D. S. Hall et al., Phys. Rev. Lett. 81, 1539 (1998).
[4] J. Stenger et al., Nature (London) 396, 345 (1998).
[5] M. R. Matthews et al., Phys. Rev. Lett. 83, 2498 (1999).
[6] A. E. Leanhardt et al., Phys. Rev. Lett. 90, 140403 (2003).
[7] K. W. Madison et al., Phys. Rev. Lett. 84, 806 (2000); J. R.

Abo-Shaeer et al., Science 292, 476 (2001); E. Hodby
et al., Phys. Rev. Lett. 88, 010405 (2001).

[8] P. C. Haljan et al., Phys. Rev. Lett. 87, 210403 (2001).
[9] T.-L. Ho and V. B. Shenoy, Phys. Rev. Lett. 77, 3276

(1996); S. T. Chui et al., Phys. Rev. A 63, 023605
(2001); D. M. Jezek et al., ibid. 64, 023605 (2001).

[10] S.-K. Yip, Phys. Rev. Lett. 83, 4677 (1999); T. Mizushima
et al., ibid. 89, 030401 (2002).

[11] E. J. Mueller, Phys. Rev. A 69, 033606 (2004).
[12] E. J. Mueller and T.-L. Ho, Phys. Rev. Lett. 88, 180403

(2002).
[13] K. Kasamatsu et al., Phys. Rev. Lett. 91, 150406 (2003).
[14] D. S. Hall et al., Phys. Rev. Lett. 81, 1543 (1998).
[15] M. R. Matthews et al., Phys. Rev. Lett. 83, 3358 (1999).
[16] A similar situation was reported in J. J. Garcı́a-Ripoll

et al., Phys. Rev. A 66, 021602(R) (2002), where special
attention was paid to the effects of the phase separation of
binary BECs with vorticity under slow rotation.

[17] These vortex and antivortex have circulations of the same
sign in the respective phase spaces, but they are out of
phase in the relative phase space, in contrast to a conven-
tional vortex-antivortex pair.

[18] G. E. Volovik, The Universe in a Helium Droplet (Oxford
University Press, Oxford, 2003), Chap. 16.

[19] D. Yoshioka, The Quantum Hall Effect (Springer, New
York, 2002), Chap. 6.

[20] J. V. Steele and J. W. Negele, Phys. Rev. Lett. 85, 4207
(2000).

[21] D. T. Son and M. A. Stephanov, Phys. Rev. A 65, 063621
(2002).

[22] If the molecule is polarized along the y axis, the texture
forms a ‘‘circular-hyperbolic’’ pair. Those two configura-
tions are different just in their orientation of the molecular
polarization, and can therefore continuously transform
into each other.

[23] In the SU(2) symmetric case, it is useful to rotate the basis
of the spinor so that the internal coupling becomes sim-
pler. Actually, if we rotate the spinors as �� � ��1 �
�2	=

���
2

p
, the nonaxisymmetric structure in Fig. 1 is trans-

formed to the axisymmetric vortex state. Here, the vortex
core of the ‘‘�’’ component is filled with ‘‘�’’ particles.
Then, the internal coupling is just the chemical potential
difference between the ‘‘�’’ and ‘‘�’’ components. As
one increases � the number of ‘‘�’’ particles drops, and
the vortex cores eventually become empty [corresponding
to the bottom of Fig. 2(a)].

[24] The rotation also produces an energy minimum without
the internal coupling, which is irrelevant to the binding
due to the domain wall of the relative phase.

[25] D. S. Rokhsar, Phys. Rev. Lett. 79, 2164 (1997).
6-4


