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Complete Phase Diagram of DNA Unzipping: Eye, Y Fork, and Triple Point
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We study the unzipping of double stranded DNA by applying a pulling force at a fraction s (0 =
s = 1) from the anchored end. From exact analytical and numerical results, the complete phase diagram
is presented. The phase diagram shows a strong ensemble dependence for various values of s. In
addition, we show the existence of an eye phase and a triple point.
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The initial step in DNA replication and RNA tran-
scription, as the enzyme associates with DNA, is to
open a few base pairs near it. In the case of replication
this opening takes place near one of the ends, whereas for
transcription it can be anywhere on the DNA [1-3]. The
ubiquity of the process calls for a mechanism that does
not require high temperatures or extreme pH conditions,
unlike melting to which it generally gets associated. One
such possibility is a force induced unzipping transition
[4]. This transition has now been well established both
theoretically [4—13] and experimentally [14-16]. The
focus of attention so far has been the geometry reminis-
cent of the DNA replication, pulling only the open end of
dsDNA. However, transcription requires pulling DNA at
an intermediate point, often with DNA getting anchored
to the cytoplasmic membrane [3] in vivo . Similarly, end
constraint is important in circular DNA as, e.g., in bac-
teria like E. coli. Anchoring of one end is also used in
single molecule experiments [14,15]. The richer surprises
in this type of geometry provide the primary motivation
for working out the full unzipping phase diagram.

The extensive theoretical work [4—13] on the unzipping
transition in various avatars of the basic Poland-Scheraga
model [17] and the nature of the real phase diagram [14]
recently obtained for lambda phage DNA indicate that the
basic features are preserved in simpler exactly solvable
models [6,8] even in two dimensions. These basic results
include the first order nature of the unzipping transition
and the existence of a reentrant region allowing unzip-
ping by decreasing temperature. In this Letter our aim is
to study the force induced transition on the lattice model
used previously in Ref. [8] but with the pulling force
applied on a base pair which is N; monomers away
from the anchored end of the DNA molecule (of total
length N). We call s the fixed fraction N, /N; see Fig. 1. In
single molecule experiments, the results may depend on
the statistical ensemble used [18,19]. One may recall that
instruments like atomic force microscopes [15] use the
fixed distance ensemble while the magnetic bead method
of Ref [14] uses the fixed force ensemble. Therefore, we
studied the unzipping transition both in the fixed force
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and the fixed distance ensembles, by using analytical and
exact transfer matrix methods, though we concentrate
mostly on the fixed force case in this Letter.

Before describing the model, let us point out a few of
the basic results we have obtained. The phase diagrams in
both the fixed distance and fixed force ensembles are
obtained. The qualitative features of the phase diagram,
especially the nature of the phases, the s-dependence, and
the ensemble dependence are generic as can be shown by
general arguments. An “eye’-like configuration exists for
all s <1 in the fixed distance ensemble, either as a dis-
tinct phase (when it extends up to the anchored end) or as
two “Y’”’s joined together (see Fig. 2) where a Y is a
coexistence of the unzipped and the zipped phases. These
configurations resemble the Y fork in replication and the
transcription bubble. In a fixed force ensemble, an eye
exists only for low values of s (s < 1/2 in our model), and
the phase diagram depends on s. For values of s where the
eye phase exists, there is triple point at the intersection of
the zipped-eye (Zp-Ey), eye-unzipped (Ey-Uz), and
zipped-unzipped (Zp-Uz) phase boundaries.

The model is defined as follows. The two strands of a
homopolymer DNA are represented by two directed ran-
dom walks on a d = 2 dimensional square lattice. The
walks, starting from the origin, are restricted to go to-
wards the positive direction of the diagonal axis (z di-
rection) without crossing each other. There is a gain of
energy —e (e > 0) for every contact (i.e., separation x =
0). The directional nature of the walks takes care of the

FIG. 1. Schematic diagram of DNA unzipping by a pulling
force at a fraction s (0 = s = 1) from the anchored end. In the
fixed force ensemble the force g is kept fixed while the sepa-
ration x is kept fixed in the fixed distance ensemble.
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FIG. 2 (color online). Fixed distance ensemble 7T versus
x/(sN) phase diagram for (a) s = 0.2 and (b) s = 0.75 . The
zipped and the eye phases are shown by thick lines. The
coexistence regions are marked by different shades or vertical
lines. X.(T), defined after Eq. (2), is represented by the dotted
line in (b).

correct base pairing of DNA. In addition to this bonding,
a force g acts along the transverse direction (x direction)
at a fixed fraction s (0 = s = 1) from the anchored end
(z = 0). As is well known, this force, though it acts at a
point, affects the bulk behavior [4]. The quantities of
interest depend on the ensemble one is working with.
For example, it is the average separation (x) at the point
of application of the force in the fixed force ensemble,
whereas, in the fixed distance ensemble, it is the average
force (g) needed to maintain the distance x between the
two strands. (g, x) constitute a thermodynamic conjugate
pair.

A taste of the surprise for s # 1 can be gleaned from a
simple analysis that is exact in the low temperature re-
gion. For s = 1, this argument gives the exact reentrant
phase boundary [6-8]. If s <1/2, at T =0, the force
opens the chain maximally so as to form an eye (exten-
sive in length). The energy E and entropy S of the eye with
respect to the completely zipped chain are E =
—gasN + 2esN and S = —2sNInu,, where u, is the
connectivity constant of the bound phase and a is a
geometric factor. Throughout this Letter we take the
Boltzmann constant kz = 1. For our lattice model, u;, =
2 and, we set a = 1 by choosing the elementary diagonal
of the underlying square lattice as the unit of length. A
transition from the zipped (Zp) state is therefore possible
if g>g.(s,T) =2(e + Tlnup)/a, which is double the
force required for the unzipping transition at s = 1. The
situation is different for s = 1/2, where complete unzip-
ping is possible at 7 = 0. In the completely unzipped
(Uz) state, the energy and entropy with respect to the
zipped state are E = Ne — gasN and S = —Nlnu, +
2(1 — s)NInu,, where w, is the connectivity constant
for a single chain. The low temperature phase boundary
is given by g.(s, T) = (e + Tln,u,b/,uf(lf‘v))/(sa). For our
lattice problem w; = 2. Hence, there will be no low
temperature reentrance if s = 1/2. These s dependences
match the exact results.

To trace out the exact phase boundary we use the
recursion relation method. Let D,(x, x') be the partition
function with separations x and x’ at the two extreme ends
of a double stranded DNA of length . Then,

x,x' < 0. One can construct two other partition func-
tions, (i) d,(x) = D,(0, x) when one end is held fixed,
and (ii) d,(x) = Y D,(x,x) when one end is free. Of
these, d,(x) has been used in previous studies of the force
at the end case [8] where the phases and the transitions
come from the singularities of the generating function,
G(z,B.8) =3, ,7eP*d,(x). These singularities are
71=1/4, z,=(2+2coshBg) ' and z; =vV—e P +1—
1 + e #. The zero-force melting, coming from z; = z3,
is at T, = 1/1n(4/3) = 3.476059497.... The unzip-
ping phase boundary can be determined in the fixed
distance ensemble by noting that the force required to
maintain the separation x is —7 Indy(x)/dx. By using
dy(x) = A(z3)*/zY*! for large N with A(z) = (1 — 2z —
V1 —4z)/(2z), one gets

g:(T) =g (s =1,T) = —TlA(z;),  (Zp & Uz).

2

This is the known s = 1 phase boundary [8] coming
from z, = z3 in the fixed force ensemble. On this bound-
ary, the end separation is given by X.(T)=x/N =
tanh[g.(T)/T]. The phase coexistence on this boundary
gives the Y-fork structure, which we simply call a Y.

Fixed distance ensemble.—If the distance or separation
of the two strands at ¢+ = sN is kept fixed at x, while the
DNA is anchored (x = 0) at t = O but free at the other end
at t = N, the partition function is (z3 dependence of A
suppressed)

ZN(X’ S) = dsN(x)a(l—s)N(x)
~ /\xz3—sN(4(1—s)N + )le;(l—s)N)' (3)

In the limit N — oo for a fixed s, the larger of the two
terms (in the big parenthesis on the right hand side)
contributes to the free energy. For

X 1 — s In(4z3)

— <X(,7T)=— ——F, 4

o XS D = GG “@
the larger term is the second one, otherwise it is the first
one. Therefore, we get a phase boundary

g.(s, T) = 2g.(T), if Eq.(4) (5a)
= g.(T), (Zp = Uz).  (5b)

With the increase of the separation x, the end point gets
detached at the critical value x = sNX(s, T), provided
X(s, T) < 1. Once all the bonds are broken the two open
tails behave like free independent chains. In such a situ-
ation, the force required to maintain the separation is just
like the s = 1 end case (in the sN — oo limit) as we see in

otherwise,
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Eq. (5a). For this to happen we also require X(s, T) <
X,.(T), or else the DNA will be in the unzipped phase.
Figure 2 shows the phase diagram on a temperature-
distance plane for two values of s in the fixed distance
ensemble, though in the force-temperature plane the
phase boundaries are independent of s as follows from
Egs. (5a) and (5b). An eye of the type shown in Fig. 1
occurs in the coexistence region shown by solid vertical
lines in Fig. 2 and is to be interpreted as two Y’s joined
together. This configuration is analogous to the transcrip-
tion bubble produced, e.g., by RNA polymerase [2] a
subunit of which keeps the two strands of DNA separated.

To supplement the exact results, the partition function
for the two strands starting from the origin is obtained
numerically by using the exact transfer matrix technique
for the recursion relation in Eq. (1). In the fixed distance
ensemble, the distance between the two strands x is varied
at a step of one (length of the diagonal of the square
lattice) from zero (“zipped”) to sN (‘“‘completely
stretched”). The quantity of interest, the average force
required to maintain the distance x between two chains,
is calculated by using finite differences in free energy.
The scaled separation between the two strands of DNA,
x/sN, versus the corresponding average force at T = 1.0
is shown in Fig. 3(a), for several values of s. Figure 3(b)
shows the eye formation in the fixed force ensemble and is
discussed next. When the end monomers of the chains
(s = 1.0) are maintained at a fixed distance, there is only
one plateau at the critical force given by Eq. (2) (the Zp-
Uz phase boundary). When s < 1.0, the force-distance
isotherm has two plateaus as per Egs. (5a) and (5b) with
a step that matches with the critical value X(s, T'). We do
not go into further details of this phase diagram here
because the subtleties are more prominent in the fixed
force ensemble.

Fixed force ensemble.—In the fixed force ensemble, the
generalization of the generating function defined for the
end case below Eq. (1) is G(z B, g) = 3 ,-0ePs* X
> 7'Z,(x, s). Using Eq. (3), this can be written as

G, B.g) = S P IAGIIZNF + AP, (©)

(@) 010 » (b) T=-10 x

3 025 o 4 120 X
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FIG. 3 (color online). (a) Scaled separation x/(sN) versus
force isotherm for different s at 7 = 1.0 with N = 256 in the
fixed distance ensemble. The location of X(s, T) (see text) is
shown by the solid line. (b) Average separation (fixed force
ensemble) between the ith monomer of the DNA of length N =
64 for T = 1.0 for a force g = 2.7 at s = 0.25 at two different
temperatures.

where the first term on the right hand side in curly brack-
ets represents the unzipped state while the second term is
for the eye state. The additional singularities in z are then
7 = [4'75(2(1 + coshBg))*]~!, which goes over to the
7, mentioned earlier for s=1, and 2z, = {2[1 +
cosh(Bg/2)]}~!. The zipped-to-unzipped phase transition
occurs at z, = z3 while a zipped-to-eye phase transition
takes place at zz = z4.

The s dependence of the singularities show that there
cannot be an eye phase in the fixed force ensemble if s =
1/2, even though one may open an eye of the type of Fig. 1
in the fixed distance ensemble. In this situation, the only
transition possible is unzipping with an s-dependent
boundary given by

8(s,T) = TInA@( =52y (Zp = Uz), (7

which matches with g.(T) for the end case. In addition,
close to T =0, we see g.(s,T) =€+ 212, which
corroborates the results from the simple argument, in-
cluding the vanishing slope at T = 0 for s = 1/2 (the
absence of a low temperature reentrance). The inset in
Fig. 4(a) shows that there is still a small region in the
intermediate temperature range where one does see a
reentrance.

With a force at a point s < 1/2, a phase boundary
comes from z3 = z,, which matches with the boundary
we already derived in Eq. (5a). This is the transition to eye
in presence of a force, as found in the fixed distance
ensemble also. However the eye phase cannot continue
for the whole temperature range, definitely not at the
melting point where the unzipped phase should be recov-
ered. The unzipped phase boundary comes from z, = z4,
which yields Eq. (7). The lower of the two curves would
determine the thermodynamic phase boundary; see Fig. 4.
These results also suggest the possibility of an eye to
unzipped phase transition which however eludes the ap-
proximation done in Eq. (6) [based on Eq. (3)]. This phase
boundary is determined numerically below. The intersec-
tion of the three boundaries, which occurs only for s <
1/2, is a triple point.

To extend the analysis for s < 1/2, and to verify the
analytical results, we use the exact transfer matrix tech-
nique, mentioned already, but now with an applied force.

AR 035 =
s L 025 =
Eye R
o «&c@’\‘\A “ Uz
2.62\ .
2566 "1 7o
o028 06
0 1.6 3.2
T

FIG. 4 (color online). The g, versus T phase diagram in the
fixed force ensemble. Lines are the exact results while the
points are from numerics. (a) For 0.5 = s = 1. The inset shows
the reentrant region for s = 0.5. (b) For s = 0.35 and s = 0.25.
The inset shows the triple point for s = 0.35.
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The average separation (x) between the two chains at
the site of application of force at a temperature 7, is
calculated by taking the finite difference of exact free
energies as g is increased in steps of Ag = 0.001. The
critical force in the thermodynamic limit is determined
by N — oo extrapolation of the crossing points of {x)
versus g curves for pairs of length N. We take N from
400 to 1000. The results are shown in Fig. 4, with very
good agreement with the analytical results.

The maximum separation between the chains at the
point of application of the force is sN, and at this sepa-
ration, the end monomers are always in an unzipped state
for 0.5 = s = 1 even for T — 0. This is not so for s < 0.5.
In this case, the end monomers will of course be unzipped
at higher temperatures but that does not rule out the
possibility of a zipped phase at low temperatures. To study
how the end monomer separation behaves with T when
s < 0.5, the force is fixed to a value which lies on the
phase boundary obtained above and T is increased. At low
temperatures, we find that the end monomers are in a
zipped state (i.e., in contact) even when the separation
between the two chains, where force is applied, is maxi-
mum. At a particular temperature, which depends on the
fraction s, the end monomer separation becomes macro-
scopic, signaling an Ey-Uz phase transition. Figure 4
shows the phase boundary obtained by repeated applica-
tion of this procedure.

The complete phase diagram for s = 0.35 and 0.25 is
shown in Fig. 4(b). The three coexistence lines meet at a
triple point 7', which shifts with s. The triple point moves
towards the high temperature side when s is decreased
and merges with the melting point for s = 0.25. The inset
shows the details around the triple point. The limit s — 0
is singular because the eye phase cannot exist and a
force applied at the anchored point cannot open a chain.
In that limit, the Ey-Uz boundary becomes vertical (par-
allel to the force axis) and is the only meaningful phase
boundary.

The Ey-Uz transition can be seen in Fig. 3(b) which
shows the average separation between the monomers of
the DNA of length N = 64 with a force at s = 0.25. We
calculate the base pair separations for two different tem-
peratures both at g = 2.7, which lies on the phase bound-
ary of the zipped and the eye phases at T = 1, and another
for the same force but at 7 = 2 deep in the unzipped
region (see Fig. 4). The monomers in the outer most part
of the DNA are in the zipped state for 7 = 1 and g = 2.7,
showing the formation of the eye, but for T = 2 the DNA
is in the unzipped phase. In the limit of N — oo the
number of bound pairs at the end of the chain is extensive
(«N) in the eye phase but not in the unzipped phase.

We may now summarize some of the results of this
Letter. (i) The phase diagrams in the fixed distance and
fixed force ensemble are shown in Figs. 2 and 4, which
also show when the eye appears as a distinct phase or as

two Y’s. (ii) There is a low temperature reentrance in the
fixed force ensemble for all values of s except for s = 1/2.
In the latter case the reentrance is restricted to a small
intermediate temperature range. (iii) In the fixed force
ensemble, the phase boundary shifts with s as it is de-
creased from s = 1 to s = 1/2. In this range there is no
triple point. (iv) For s < 1/2, the low temperature phase
boundary representing the zipped-to-eye phase transition
in the fixed force case is independent of s and it intersects
the s-dependent zipped-to-unzipped boundary at a triple
point. There is an additional eye-to-unzipped phase tran-
sition line in the large force regime. (v) The triple point
shifts towards the zero-force melting point 7, as s is
decreased. Although our approach is based on a coarse
grained model, we believe that our results are robust to be
observed by high precision measurements of DNA unzip-
ping under a pulling force.
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