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Nonquantized Dirac Monopoles and Strings in the Berry Phase of Anisotropic Spin Systems
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The Berry phase of an anisotropic spin system that is adiabatically rotated along a closed circuit C is
investigated. It is shown that the Berry phase consists of two contributions: (i) a geometric contribution
which can be interpreted as the flux through C of a nonquantized Dirac monopole, and (ii) a topological
contribution which can be interpreted as the flux through C of a Dirac string carrying a nonquantized
flux, i.e., a spin analogue of the Aharonov-Bohm effect. Various experimental consequences of this
novel effect are discussed.
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Dirac’s elegant explanation of charge quantization as a
consequence of the existence of at least one hypothetical
magnetic monopole [1] has stimulated considerable inter-
est. It is important to realize that the hypothesis of spacial
isotropy plays a central role in Dirac’s theory: spacial
isotropy requires that the Dirac string attached to the
Dirac monopole (in order to ensure compatibility with
the known laws of electromagnetism and quantum me-
chanics) be ‘‘invisible’’ to electrons, which, in turn, re-
quires that the flux carried by the Dirac string is
quantized in units of �0 � hc=e (otherwise the string
would be able, via the Aharonov-Bohm effect [2], to
scatter electrons, which would violate the assumed iso-
tropy). The quantization of electric and magnetic charges
in units of e and g, respectively, with eg � �h=�2c�, then
follows. To the best of our current experimental knowl-
edge, space is indeed isotropic and charges are quantized
to a relative accuracy better than 10�21 [3]. But in spite of
considerable efforts, Dirac monopoles have remained elu-
sive, so far.

It is therefore of great interest to investigate objects that
are completely analogous to the ‘‘real’’ Dirac monopoles,
however, living in some abstract space (unlike the real
Dirac monopoles, which live in real space), and possess-
ing the great advantage of being more easily amenable to
experiment. Such ‘‘fictitious’’ Dirac monopoles (from
here on, I shall simply call them Dirac monopoles, with-
out ambiguity) play an outstanding role in the context of
the Berry phase of quantum systems adiabatically driven
around a closed circuit C in the space of external parame-
ters [4]. For the case of a spin S in a magnetic field
(hereafter called Berry’s model), the Berry phase is pro-
portional to the ‘‘flux’’ of a quantized ‘‘Dirac monopole’’
through the circuit C (in this case the external parameters
reduce to a unit vector and the parameter space is the
sphere S2). The quantization of the ‘‘Dirac monopole’’ is
directly related to the quantization of the angular mo-
mentum along the field axis, i.e., to the rotational invari-
ance of the Hamiltonian around the field axis. However,
in the light of the above discussion on the interplay
between space isotropy and charge quantization, one
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can anticipate that the quantization of the Dirac mono-
pole may be lifted if the rotational invariance is broken,
which may lead to nontrivial new physical phenomena.
For Berry’s model, the parameter space (sphere S2) is
simply connected (its fundamental homotopy group is
trivial: �1�S

2� � 0), so that the Berry phase may not
depend on topological properties of the circuit C and is
purely geometric (solid angle). By contrast, in the more
general case of anisotropic spin systems, the parameter
space is not simply connected, as discussed below, so that
the Berry phase may be expected to contain a term that
depends on some topological property of the circuit C.
The simplest example of a topological Berry phase is
given by the Aharonov-Bohm effect [2]: here the parame-
ter space is (or may be reduced to) the circle S1, which is
nonsimply connected and has a nontrivial fundamental
homotopy group �1�S1� � Z; the Berry phase is given by
the winding number of the circuit C around the
Aharonov-Bohm flux tube multiplied by the (in general
nonquantized) flux of the tube. The aim of the present
Letter is (i) to show that something similar generally
happens in anisotropic spin systems, (ii) to give explicit
predictions for this novel effect, and (iii) to discuss some
experimental realizations.

Let H0 be the Hamiltonian of a completely general
spin system comprising an arbitrary number of interact-
ing spins subject to external magnetic fields and to arbi-
trary magnetic anisotropies, and HR � URH0U�1

R the
Hamiltonian resulting from a global rotation R. We are
interested in the Berry phase associated with a closed
circuit C in the parameter space of rotations, consisting of
adiabatic continuous sequences of rotations R�t� with t 2
�0; T� and R�0� � 1. Obviously, for C to be closed, R�T�
has to belong to the group G of the proper symmetries
of H0.

Let us first discuss the topology of the parameter space
M. The latter depends on the order q of G. As an
example, let us consider the model depicted on Fig. 1;
for Fig. 1(a)–1(c), G is C1, C2, and C1, respectively.
Rotations may be represented in the axis-angle parame-
trization by points in a 3D ball of radius 2�. Each rotation
2-1  2004 The American Physical Society



FIG. 1 (color). Sketch of the parameter space M (in angle-
axis representation) for a spin S � 1 with a uniaxial anisotropy
axis of various orientations, and a magnetic field along z. The
various homotopy classes of closed loops are shown and labeled
by the corresponding element of the fundamental homotopy
group �1�M�. See text for details.
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of SO(3) is represented by a pair of two distinct points in
the ball [since ��; n̂� and �2�� �;�n̂� represent the same
rotation]; in particular, the identity 1 is represented both
by the origin and by the entire sphere of radius 2�.
Furthermore, rotations of SO(3) which are related to
each other by proper symmetries of H0 yield in fact the
same Hamiltonian and are to be identified, so that each
element of the parameter space M is represented by a set
of 2q points in the ball of radius 2�, i.e., M � SO�3�=G.
For Fig. 1(c) (G � C1), one has on the z axis a continuous
line of points equivalent to the identity. Closed loops
starting from the origin that can be continuously de-
formed into each other (shown with the same color in
Fig. 1) belong to a same homotopy class. For example, one
easily sees that there are, respectively, two, four, and one
distinct homotopy classes in Fig. 1(a)–1(c). To summa-
rize, for G � Cq with 1 
 q <�1, one finds M �

SO�3�=Cq � RP3=Zq, and the fundamental homotopy
group is �1�M� � �1�RP

3=Zq� � Z2q, the group of inte-
gers modulo 2q; for G � C1, one gets M �
SO�3�=C1 � S2, which is simply connected, and one
recovers the result of Berry’s model, �1�M� � �1�S2� �
0, as expected.

Let us then calculate the Berry phase. The rotations
will now be parameterized in the form R � �’; �; ��,
with � � ’�  , where �’; �;  � are the Euler angles.
The polar angles �’; �� give the orientation of unit vector
ẑ�R� of the rotated z axis, while � gives the twist angle of
the x and y axes around ẑ�R�. The unitary operator of the
rotation R is UR � e�i’Jze�i�Jye�i���’�Jz , the total angu-
lar momentum operator.

Let j�n
0i (with n � 1; 2; . . . ) be the normalized eigen-

states of H0, of energies En. For a general rotation R, we
choose as basis functions the rotated eigenstates, j�n

Ri �
URj�

n
0i, with energies En�R� � En, independent of R.

From now on, we shall restrain our discussion to the case
of nondegenerate levels En (Abelian case). Note that
HR � H0 does not imply j�n

Ri � j�n
0i but only j�n

Ri �
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e�i�nR j�n
0i; this multivaluedness of the basis functions

requires particular care.
Berry [4] pointed out that for a system satisfying

j��t � 0�i � j�n
0i adiabatically (i.e., in a time T �

�h=jEm � Enj, 8m � n) transported along the closed cir-
cuit C, the wave function at time T (after closing the
circuit) is given by j��T�i � ei�!n�"n�C��j�n

0i, where !n �
� �h�1

R
T
0 En�R�t��dt � �EnT= �h is the dynamical phase

and "n�C� � i
R
Ch�n�R�j@R�n�R�i � dR� �nR�T� is the

Berry phase (independent of T and depending only on the
circuit C), of interest here. Note that the last term in the
above equation is due to the multivaluedness of the basis
functions and was absent in the original paper of Berry
[4], where a single-valued basis was considered.

Simple algebra then yields "n�C� �
R
C An

R � dR�

i ln�h�n
0jUR�T�j�

n
0i�, with An

R � h�n
0jARj�

n
0i, and AR �

i�UR�
�1�@RUR�. One then obtains the components of A:

A’ � Jz�cos� � 1� � sin��Jx cos��� ’� � Jy sin���

’��, A� � Jx sin��� ’� � Jy cos��� ’�, A� � Jz. So
far, we have not specified any particular choice for the
Cartesian axes. When calculating "n�C�, it is convenient
to choose the z axis along the expectation value of J for
the state j�n

0i, i.e., ẑn � Jn=Jn, with Jn � h�n
0jJj�

n
0i and

Jn � kJnk. Note that in the most general situation, Jn is
not a multiple of 1=2 and that the z axes defined in this
way may be different for different states n and n0; if Jn �
0, the choice of ẑn is indifferent. With this choice, one
immediately gets An’ � Jn cos��n � 1�, An� � 0, An� � Jn,
where the n indices on the Euler angles remind that they
are defined here with respect to a n-dependent z axis ẑn.

We now consider the last term of the Berry phase. Since
R�T� belongs to the symmetry group of H0, it must leave
Jn invariant, so that �n�T� � 0; therefore UR�T� �

e�i�n�C�Jz , where �n�C� �
R
C d�n is the total twist angle

of the x and y axes around ẑn. If ẑn is a symmetry axis of
order q, we must have �n�C� � pn�C�2�=q, with
pn�C� 2 Z. The state j�n

0i may be expanded in terms of
the eigenstates jM; ẑni of Jz with quantum numberM (for
the z axis along ẑn), i.e., j�n

0i �
P
Ma

n
MjM; ẑni. LetMn be

the largest value of M for which anM � 0; one can easily
see that the only values of M for which anM � 0 are of
the form Mn � rq, with r 2 N, so that �nR�T� �

Mn�n�C�mod2�. Putting everything together, one finally
obtains

"n�C� � �Jn�n�C� � �Mn � Jn�
2�
q
pn�C�mod2�; (1)

where �n�C� �
R
C�1� cos�n�d’n is the (oriented) solid

angle of the curve described by ẑn�R�. Equation (1) is the
central result of this Letter. It is in fact a fairly general
theorem, applying a broad class of systems, as it relies
only on the properties of rotations, independently of any
specific detail of the Hamiltonian.
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The physical interpretation is as follows. A given ro-
tation R is represented by a point of polar coordinates
�’n; �n� on a sphere (hereafter called the Berry sphere)
giving the orientation of ẑn�R�, and by a point on a ring
(hereafter called the Berry ring), with angular coordinate
q�n (describing the twist of the x and y axes around
ẑn�R�); the winding number pn�C� of the circuit C around
the Dirac string is a topological invariant of C (mod2q).
A Dirac monopole of strength �Jn is positioned at the
center of the sphere, whereas the ring is threaded by a
Dirac string carrying a flux equal to �2��Mn � Jn�=q.
The Berry phase for a given circuit C is then given by the
sum of the fluxes through C due to the Dirac monopole at
the center of the Berry sphere and to the Dirac string
threading the Berry ring, as depicted schematically on
Fig. 2.

The contribution of the Dirac monopole is proportional
to the solid angle �n�C�, which is a geometric property of
the circuit C, and may be called the geometric Berry
phase. The contribution of the Dirac string is proportional
to the winding number pn�C� of the circuit C around the
Dirac string, and may be called the topological Berry
phase.

The latter contribution constitutes a spin analogue of
the Aharonov-Bohm effect [2]. The analogy, however is
not one-to-one, since the topology of the parameter
space in the present case (M � RP3=Zq, �1�M� � Z2q)
differs from the one of the Aharonov-Bohm effect (M �
S1, �1�M� � Z). This is related to the fact that a solid
angle is defined modulo 4�: writing pn�C� � 2qkn�C� �
rn�C� with rn�C� and kn�C� integers, Eq. (1) may be
rewritten as "n�C� � �Jn��n�C� � 4�kn�C�� � �Mn�
Jn�

2�
q rn�C�mod2�.

The Dirac monopole giving rise to the geometric Berry
phase is generally nonquantized; the deviation from exact
quantization, Mn � Jn, is a measure of the effect of
anisotropy for j�n

0i. This clearly illustrates the above
discussion on the interplay of charge quantization and
spacial isotropy. The topological Berry phase due to the
FIG. 2 (color). Schematic representation of a circuit C on the
Berry sphere with a Dirac monopole at its center, and on the
Berry ring threaded by a Dirac string. In the case depicted
here, the winding number pn�C� equals zero.
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Dirac string obtained here constitutes a novel effect that
appears only for anisotropic systems.

Let us now consider how the geometric and topological
Berry phases could be probed experimentally. The present
theory most directly applies to nuclear or electronic spins
in an anisotropic environment. The simplest way of prob-
ing the Berry is to repeat periodically the circuit C at a
frequency !C=�2�� (with �h!C � jEm � Enj, 8m � n).
The Berry phase will therefore increase linearly in time,
which means that the energy of the state nwill be shifted
by an amount �En � � �h!C"n�C�=�2��. These fre-
quency shifts would be measurable as a shift �! �
!C�"n�C� � "n0 �C��=�2�� of the magnetic resonance
line corresponding to transitions between the states n
and n0. By taking suitably chosen circuits C one can
investigate the geometric and adiabatic Berry phases
separately.

In particular, by choosing a circuit that is just a rotation
of 2�=q around ẑn (which is also the simplest experi-
ment), only the topological Berry phase is probed. For
nuclear spins, this is simply achieved by spinning the
sample, a standard technique in nuclear magnetic reso-
nance that was successfully applied to study both the
Abelian and non-Abelian (geometric) Berry phases of
35Cl nuclei (S � 3=2) [5,6]. The simplest case is for a
single spin S � 1 with Hamiltonian H0 � �BSz � KS2x
[Fig. 1(b)]. Taking C as a rotation of �� around the z
axis, one easily calculates the Berry phase: "1 �

�"�1 � ���1� b=
��������������
1� b2

p
�, "0 � 0, for S � 1,

and "3=2 � �"�1=2 � ���1� �b� 1�=
���������������������������
�b� 1�2 � 3

p
�,

"1=2 � �"�3=2 � ���1� �b� 1�=
���������������������������
�b� 1�2 � 3

p
�, for

S � 3=2, where b � 2B=K and where the states are
labeled by the (quantized) value of Sz obtained in the
limit K ! 0.

For electronic spins, sample spinning is not a realistic
approach. The Berry phase can nevertheless be investi-
gated by applying the magnetic field at some angle �B
with respect to the anisotropy axis [Fig. 1(a)], and by
rotating the field on a cone of angle �B around the anisot-
ropy axis, which can be conveniently done experimen-
tally. The Berry phase obtained in that case contains both
a geometric and a topological contribution.

The Berry phase may also influence the properties of
magnons. For example, it has been recently indicated that
the geometric Berry phase due to a noncoplanar texture
of the magnetization of a ferromagnetic ring [see
Fig. 3(a)] would affect the dispersion of magnons (lifting
the degeneracy of clockwise and anticlockwise propagat-
ing magnons), and generate some equilibrium spin cur-
rents [7]. In this study, however, the effect of magnetic
anisotropy was ignored (in a classical picture, this corre-
sponds to a circular precession of the magnetization), so
that the resulting Berry phase associated with the propa-
gation of a magnon around the ring is merely that of a
quantized monopole, and does not include the topological
2-3
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FIG. 4 (color). Magnon spectrum of a ferromagnetic ring of
radius R, with exchange stiffness A and tangential easy-axis
anisotropy K � �M2, in a uniform perpendicular magnetic
field B, for a typical value 4KR2=A � 200. Solid and dashed
lines correspond to modes with counterclockwise and clock-
wise group velocities, respectively. The vertical dashed line
gives the critical field for stability of the state with uniform
vertical magnetization.

FIG. 3 (color). Illustration of the analogy between (a) the
geometric Berry phase of magnons on a ring due to a texture
of the magnetization and (c) the (geometric) Aharonov-Bohm
effect in a homogenous field, contrasted with the analogy
between (b) the topological Berry phase of magnons on a
uniformly magnetized ring due to the magnetic anisotropy
and (d) the true (topological) Aharonov-Bohm effect due to
the vector potential of a flux tube.
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Berry phase due to a nonquantized Dirac string. The
geometric Berry phase obtained in this case is analogous
to the geometric (i.e., dependent on the particular geome-
try of electron trajectories because of the finite width of
the ring’s arms) Aharonov-Bohm effect for a ring in a
homogenous magnetic field, as depicted schematically on
Fig. 3(c). Since magnons have a spin S � 1, they may be
subject to magnetic anisotropy. If one properly incorpo-
rates the effect of magnetic anisotropy, then the topologi-
cal Berry phase gives rise to new effects. For example, if
one considers a magnetic ring uniformly magnetized
along the ring axis, and with some magnetic anisotropy
giving a tangentially oriented easy-magnetization axis,
then the precession of the magnetization (in a classical
picture) has an elliptical polarization whose large axis is
tangential to the ring and makes a turn of 2� around the
ring (this corresponds to a winding number p�C� � 2), as
depicted schematically on Fig. 3(b), so that a topological
Berry phase is generated by the anisotropy; the degree of
ellipticity, and hence the topological Berry phase, can be
conveniently controlled by means of an external field
parallel to the ring axis. The latter situation is analogous
(except for the difference discussed earlier) to the ‘‘true’’
(i.e., topological) Aharonov-Bohm effect in which the
flux threading the ring is concentrated in a flux tube,
the ring itself being in a field-free region [see Fig. 3(d)].
The required anisotropy would be easily obtained as a
consequence of shape (dipolar) anisotropy if one takes a
magnetic ring approximately as thick as wide. The topo-
logical Berry phase would manifest as a splitting of
magnon spectrum, lifting the degeneracy between clock-
247202
wise and anticlockwise propagating magnons, an effect
that could be observed rather easily. A detailed account of
the effect of Berry phase on magnons will be given else-
where [8]; I give below, without further details, the results
for the magnon spectrum of a ring of radius R with
exchange stiffness A and (dipolar) magnetic anisotropy
K � �M2, in a perpendicular field B sufficiently large to
homogenously magnetize the ring along its axis [see
Fig. 3(b)]. I consider a typical ferromagnetic ring (Ni
ring of radius R ’ 75 nm, width w ’ 20 nm, and thick-
ness h ’ 20 nm); the ring is characterized by the dimen-
sionless parameter 4KR2=A ’ 200. The calculated
magnon spectrum is shown on Fig. 4, where the lifting
of the degeneracy between states with anticlockwise
(n > 0) and clockwise (n < 0) group velocity due to the
topological Berry phase appears very clearly.
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