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Shadow on the Wall Cast by an Abrikosov Vortex
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At the surface of a d-wave superconductor, a zero-energy peak in the quasiparticle spectrum can be
observed. This peak appears due to Andreev bound states and is maximal if the nodal direction of the
d-wave pairing potential is perpendicular to the boundary. We examine the effect of a single Abrikosov
vortex in front of a reflecting boundary on the zero-energy density of states. We can clearly see a
splitting of the low-energy peak and therefore a suppression of the zero-energy density of states in a
shadowlike region extending from the vortex to the boundary. This effect is stable for different models
of the single Abrikosov vortex, for different mean free paths and also for different distances between
the vortex center and the boundary. This observation promises to have also a substantial influence on the
differential conductance and the tunneling characteristics for low excitation energies.
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Today, there is common agreement that most high-Tc
superconductors exhibit d-wave symmetry. An important
characteristic of d-wave superconductors is the possible
existence of Andreev bound states at their surface [1–3].
This increase of the local zero-energy quasiparticle den-
sity of states at the surface can clearly be observed in the
differential tunneling conductance as a pronounced zero-
bias conductance peak [4–6]. For specular boundaries,
this peak reaches maximum height if the surface is
perpendicular to the nodal direction of the d wave. The
effect shrinks if the orientation is changed [2,4]. For an
angle of 45� between the nodal direction and the surface
the bound states have vanished completely. However, it
has been pointed out that for rough surfaces a similar
shape of the zero-bias conductance peak is obtained
which is independent of the boundary orientation [7]. If
a magnetic field is applied, the spectral weight of the
zero-bias peak decreases and a splitting of the peak is
observed [8–10]. It has been shown that surface screening
currents along the boundary can lead to such a splitting
[7]. Also, interaction of the bound states either with
impurity states or with localized states in a neighboring
barrier can lead to a suppression and broadening of the
zero-bias conductance peak [11,12].

In this Letter, we study a single Abrikosov vortex in
front of a specular surface, and we investigate the effect
of the vortex on the local quasiparticle density of states
along the boundary. All interesting phenomena of this
problem are described within the quasiclassical theory,
which is valid if the coherence length is much larger than
the Fermi wavelength. To calculate the local density of
states in the vicinity of the boundary it is necessary to
find numerically stable solutions of the Eilenberger equa-
tions [13,14] that fulfill the appropriate boundary condi-
tions at the specular surface. For this purpose we use the
Riccati parametrization of the quasiclassical propagator
[15]. Along a trajectory of the kind r�x� � r0 � xvF, the
Eilenberger equations of superconductivity reduce to a set
of two decoupled differential equations of the Riccati
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type for the functions a�x� and b�x�:

�hvF@xa�x� � �2~�n ��ya�x��a�x� 	 � � 0;

�hvF@xb�x� 	 �2~�n ��b�x��b�x� ��y � 0;
(1)

where i~�n � i�n � vF 
 ecA are shifted Matsubara fre-
quencies. For the simple case of a cylindrical Fermi
surface, the Fermi velocity can be written as vF �
vF�e1 cos�� e2 sin��. The � and r dependence of the
pairing potential � can be factorized in the form
��r; �� � �0������r�. For a dx2	y2-wave superconductor
the symmetry function takes the form ���� � cos�2��,
and for s-wave symmetry it becomes constant ���� � 1.
For �n > 0 the Riccati equations have to be solved using
the bulk values as initial values at x � �1:

a�	1� �
��	1�

�n �
��������������������������������
�2n � j��	1�j2

p ;

b��1� �
�y��1�

�n �
��������������������������������
�2n � j���1�j2

p :
(2)

The numerical solution of the Riccati equations can be
done with minor effort and leads to rapidly converging
results. For the calculation of the local density of states,
the imaginary part of the quasiclassical propagator has to
be integrated over the angle � that defines the direction of
the Fermi velocity. In terms of a and b, we have

N�r0; E� �
Z 2�

0

d�
2�

Re
�
1	 ab
1� ab

�
i�n!E�i�

; (3)

where E denotes the quasiparticle energy with respect to
the Fermi level and � is an effective scattering parameter
that corresponds to an inverse mean free path. As is well
known, the localized zero-energy state in a dx2	y2-wave
superconductor at a specular 110 boundary arises from the
sign change in the pairing potential on a quasiparticle
trajectory that is reflected at the surface. The outgoing
particles are Andreev reflected at this potential step and
interfere with the incident quasiparticles. This interfer-
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FIG. 1 (color online). Zero-energy local density of states of a
dx2	y2 -wave superconductor. A reflecting 110 boundary is situ-
ated at the back of the image; the single Abrikosov vortex can
be found at a distance of two coherence lengths xV � 2� in
front of it. The Andreev bound states at the boundary are seen
as the bright regions along the y axis, and as the high values in
the three-dimensional plot. The localized states in the vortex
center are seen as the peak in the upper image and as the bright
spot in the image below. One can clearly identify the distinct
shadow that emanates from the vortex center to the boundary.
An effective scattering parameter of � � 0:1�0 has been used
for the calculations.
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ence process leads to stable zero-energy trapped states in
the vicinity of the boundary, called Andreev bound states.
The same sign change in the order parameter is found on a
trajectory that passes near the center of a vortex and
therefore leads to similar localized Andreev bound states
inside the vortex core. The suppression of the amplitude
of the pairing potential around the vortex center gives
only a small quantitative correction in the calculation of
the trapped state, as we already pointed out before [16].
The influence of the boundary for anisotropic supercon-
ductors is included within the quasiclassical theory if the
nonlinear boundary conditions for the quasiparticle
propagator are applied [17,18]. For the Riccati parametri-
zation, a substantial simplification occurs, and an explicit
solution of the nonlinear boundary conditions can be
found [19].

In the following, we assume a totally reflecting surface
where the transparency T equals zero while the reflec-
tivity R becomes one. In this special case the boundary
conditions reduce to al=rout � al=rin and bl=rin � bl=rout. Then, we
try to find an appropriate model that describes the pairing
potential associated with the single vortex in front of the
reflecting boundary. With the condition that there are no
currents flowing across the boundary, we have to find a
phase of the order parameter where the phase gradient
vanishes perpendicular to the boundary. In analogy to the
classical boundary value problem of electrostatics with a
point charge in front of a conducting surface, we intro-
duce an image vortex on the opposite site of the reflecting
boundary. The pairing potential around a vortex at posi-
tion rV can be written as ��r� � f�r	 rV�e

i��r� (see also
[20]). The function f�r	 rV� characterizes the amplitude
of the pairing potential of the single vortex. Since we
consider a vortex-antivortex pair, the phase ��r� is given
as ��r� � arg�r	 rV� 	 arg�r	 rV�. The location of the
image vortex behind the boundary is defined by rV �

rV 	 2n̂hn̂; rVi. The normal unit vector is given as n̂ �

1=
���
2

p
�e1 � e2� for a 110 boundary. The origin O of our

coordinate system is placed at the boundary right between
the vortex and the image vortex. The y axis is oriented
parallel to the boundary. xV denotes the vortex position on
the x axis and also measures the vortex to boundary
distance. Furthermore, it is useful to introduce the coher-
ence length � � �hvF

�0
as our length scale. We performed

calculations of the local density of states for both a fully
self-consistently determined pairing potential and a con-
stant modulus f�r	 rV� � 1. The latter corresponds to a
pure phase vortex. The self-consistent results show some
quantitative differences, the vortex core states and surface
states being somewhat more extended in space and the
peak height reduced. However, the main qualitative effect
we want to present here, the shadow on the zero-energy
density of states, exists independently. Thus, we will
restrict our following considerations to the simpler sec-
ond model. In Fig. 1 we show the zero-energy local
density of states in the vicinity of the reflecting boundary.
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In the upper part of the image, the local density of states
is shown as a three-dimensional surface; in the projection
below, we show the same quantity as a density plot. A
phase vortex is placed two coherence lengths xV � 2�
away from the surface. We assume a dx2	y2 symmetry of
the order parameter and set the boundary with an angle of
45� to the b axis of the crystal. First, we notice that the
fourfold symmetry of the local density of states around
the vortex is broken. We also observe a shadowlike sup-
pression of the zero-energy density of states in a triangu-
lar region between the vortex and the boundary. The
picture for an s-wave superconductor is totally different.
As shown in Fig. 2, the vortex has little influence on the
boundary density of states. Here, the high zero-energy
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FIG. 2 (color online). Zero-energy local density of states of
an s-wave superconductor. Again, the reflecting boundary is
situated at the back of the image, while the single Abrikosov
vortex can be found at a distance of one coherence length xV �
� in front of it. The high zero-energy density of states of the
s-wave vortex slightly illuminates the boundary. An effective
scattering parameter of � � 0:1�0 has been used for the
calculations.

FIG. 3. Zero-energy density of states of a dx2	y2 -wave super-
conductor along a 110 boundary for different vortex positions
xV . The curves are normalized to the local density of states at
the boundary without vortex (xV ! 1). The effective scatter-
ing parameter is chosen to be � � 0:1�0.

FIG. 4. Zero-energy quasiparticle density of states of a
dx2	y2 -wave superconductor at the boundary as a function of
the vortex position xV . The different curves correspond to
different mean free paths related to the inverse of �. The
density of states of each curve is normalized to the correspond-
ing boundary density of states without vortex.
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density of states of the vortex rather illuminates the
boundary. The small shadow on the right-hand side of
the vortex and the slight line between the vortex and the
boundary are due to quasiparticles with an inclination
angle of 90� that are trapped between the reflecting
boundary and the potential step in the vortex core.
Below, we will focus on a dx2	y2-wave superconductor
with a 110 boundary. For a 100 boundary the result is very
similar to the s-wave case. More details with an arbitrary
orientation of the boundary will be discussed in a follow-
ing work. In Fig. 3 we show the zero-energy density of
states along the 110 boundary. The different curves cor-
respond to different vortex positions xV . The calculations
have been done using a value of � � 0:1�0. For increasing
vortex to boundary distances xV we find a decrease of the
shadow depth, while the width increases visibly.
Apparently, the shadow effect exists for a wide range of
vortex to boundary distances xV even larger than 10�. For
distances smaller than 1 coherence length �, a self-
24700
consistent calculation of the pairing potential around
the vortex might become necessary.

In the following, we want to obtain a more detailed
impression of the vortex shadow at the point O. We also
want to study the influence of the effective quasiparticle
scattering parameter � introduced in Eq. (3) on the local
density of states. Without vortex, the value of the zero-
energy density of states at the boundary shows a sensitive
dependence on the decoherence parameter �. With de-
creasing �, the value of the zero-energy peak at the
boundary increases rapidly. In Fig. 4 we show the zero-
energy density of states at the point O as a function of the
vortex to boundary distance xV for different values of �.
The curves are normalized to the particular values of the
zero-energy boundary density of states without a vortex
or far away from the vortex center. We find that both the
range and the relative depth of the shadow increase, if we
decrease the scattering rate �. We want to point out that
1-3



FIG. 5. Quasiparticle spectrum of a dx2	y2 -wave supercon-
ductor taken at a 110 boundary at the point adjacent to the
vortex center (O). The curves are calculated for different
vortex distances xV from the boundary. The effective scattering
parameter is chosen to be � � 0:1�0.
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this shadow effect can be observed in clean superconduc-
tors with a long mean free path as well as in supercon-
ductors with higher scattering rates.

In order to explain the suppression of the local zero-
energy density of states at the surface, we now concen-
trate on a given point in the shadow region. In order to find
the quasiparticle spectrum there, the angular integration
in Eq. (3) has to be done. For each angle, the integrand
corresponds to the contribution of a quasiparticle trajec-
tory with the direction specified by �. Because of the
phase gradient of the order parameter, the energy ‘‘seen’’
by a quasiparticle flying along a trajectory is shifted.
Additionally, this shift itself changes locally along the
trajectory. Thus, for most of the angles, the Riccati equa-
tions [Eq. (1)] are not evaluated at zero energy. This is
sufficient, however, to miss the sharp zero-energy peak of
the bound state at the surface. As a consequence, the zero-
energy density of states is reduced. In the quasiparticle
spectrum, the spectral weight of the bound states is
shifted from the Fermi level towards higher energies. In
the limit xV ! 1, this effect corresponds to the splitting
of the zero-bias peak due to surface currents [7].

In Fig. 5 we show the local density of states at the point
O for different vortex to boundary distances xV as a
function of energy. If the Abrikosov vortex is placed in
the vicinity of the boundary, we observe a distinct split-
ting of the zero-energy peak. With increasing distance
between vortex and boundary the splitting is reduced. At
xV � 10� a splitting is no longer visible, while the height
of the zero-energy peak is still considerably reduced.

The strong reduction of the zero-energy density of
states at the 110 boundary of a dx2	y2-wave superconduc-
tor has of course an important influence on the zero-bias
anomaly in the tunneling conductance. Even in zero
magnetic field, vortices can remain in the high-Tc mate-
rials by pinning defects. In the vicinity of grain bounda-
ries the shadow effect of these pinned vortices will play
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an important role for the grain boundary tunneling due to
the local reduction of the zero-energy density of states
and provide a natural explanation for the experimental
observation of zero-bias conductance peak splitting in the
absence of an external magnetic field [10] as well as
hysteresis [9]. The shadow shown in Fig. 1 might also
be observable directly by an STM tunneling experiment.
We have checked that the vortex shadow effect reported
here remains for a self-consistently determined pairing
potential and even in the presence of rough surfaces,
which we will present in a future work.
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