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Is the Ballistic Limit Attainable at Room Temperature?
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Electron transport in nanoscale semiconductor structures is theoretically investigated to answer the
question of whether or not the ballistic limit is really attainable under room temperature operation. The
semiclassical Boltzmann transport equation is solved analytically under the relaxation time approxi-
mation for n�-n-n� test structures. We demonstrate that the solution of the Boltzmann transport
equation exhibits a boundary layer structure near the potential barrier and thus the scatterings in the
active region cannot be neglected even in nanoscale structures, as far as they are operated at room
temperature under high applied voltages.
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FIG. 1. Typical energy diagram for electrons in conventional
devices under the applied voltage Va.
The channel length in the state-of-the-art metal-ox-
ide-semiconductor field-effect transistors (MOSFETs)
now reaches the order of tens of nanometers, which is
nearly comparable to or even smaller than a typical
mean-free path at room temperature. Electron transport
in such small transit regions is expected to be quasibal-
listic. Ballistic transport, in which the channel electrons
are assumed to cross the active region without any scat-
tering, is the extreme case of such nonstationary trans-
port [1,2]. In ideal ballistic transport, the shape of the
electron distribution function in the channel is given by
the combination of the quasiequilibrium Maxwell distri-
butions at the reservoirs (source and drain) and its trans-
port properties have been studied extensively [1–4]. In
reality, however, the scattering rate is large (or at least
finite) at room temperature in many cases and it is not
certain whether or not such a ballistic limit could be
naively taken for the kinetic equation such as the
Boltzmann transport equation (BTE). In fact, energy
dissipation ought to be inevitable in analyzing irrevers-
ible transport characteristics [5].

We have recently examined the velocity distribution
functions in the channel region of nanoscale semiconduc-
tor structures by numerically solving the BTE [6]. It has
been shown explicitly that the velocity distribution func-
tions are greatly broadened due to scatterings and rather
different from those expected from the ballistic theory. In
the present Letter, this discrepancy is theoretically re-
solved. The BTE is solved analytically under the relaxa-
tion time approximation (RTA) and it is shown that the
ballistic limit cannot be naively taken because of the
mathematical structure of the BTE.

We begin by reviewing the solution of the one-
dimensional BTE under the RTA. Under steady state,
the BTE takes the form
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where f�x; v� is the electron distribution function, m is the
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electron effective mass, V�x� is the electrostatic potential,
e ( > 0) is the magnitude of the electronic charge, and
��x� is the relaxation time. feq�x; v� is the local equilib-

rium distribution function and given by [7] feq�x; v� �

n�x�
������������

m
2
kBT0

q
e��mv2=2kBT0�, where kB is the Boltzmann con-

stant, T0 is the lattice temperature, and n�x� �R
dvf�x; v� is the electron density.
The ballistic solution is usually obtained from Eq. (1)

by taking the limit of ��x� ! 1. Since electrons in a
lightly doped active region are assumed to be
scattering-free, f�x; v� in the ballistic limit is then given
by the sum of the quasiequilibrium distribution functions
at the reservoirs. Under a typical energy configuration
encountered in diodes or field-effect transistors (FETs),
as depicted in Fig. 1, f�xb; v� at the potential barrier (x �

xb) takes the familiar form as feq�xS;
�����������������������
v2 � 2e��b

m

q
� for

v > 0 and feq�xD;�
��������������������������������
v2 � 2e���b�Va�

m

q
	 for v < 0, where xS

and xD are the edge of the highly doped left (S region)
and right (D region) reservoirs, respectively. Va is the
applied voltage and ��b is the potential barrier for
electrons. The lightly doped n region (x 2 �xS; xD	) is
denoted hereafter as channel. Ballistic transport is, there-
fore, described as a simple combination of the right- and
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left-moving electrons. We show in Fig. 2 the velocity
distribution functions at the top of the electronic poten-
tial barrier (x � xb) obtained by solving numerically the
BTE for n�-n-n� diodes with various channel lengths
(Lc � 50, 30, 15 nm) [6]. Notice that the distribution
function under the ballistic limit is given by the hemi-
Maxwellian distribution, whereas the velocity distribu-
tion function obtained from the BTE always exhibits
non-negligible electrons with negative velocity. Since
the number of electrons coming ballistically from the D
region is negligible, the electrons with negative-
component velocity must result from scatterings in the
channel region.

The discrepancies in the velocity distribution func-
tions, as observed in Fig. 2, are the manifestation of a
serious problem inherent in the ballistic theory. Changing
the variables from �x; v� to �x; "� with " � mv2=2�
eV�x� (" � 0), Eq. (1) is expressed as

v�x; "�
df�x; "�

dx
� �

f�x; "� � feq�x; "�

��x�
: (2)

Since Eq. (2) is linear in f�x; "�, the exact solution for the
BTE is obtained as
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(3)

Notice that electron velocity v�x; "� could be indefinitely
small depending on electron’s energy ", whereas the
relaxation time ��x� is finite at room temperature no
matter how small the device size is. Therefore, Eq. (3) is
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FIG. 2 (color online). Velocity distribution functions at the
top of the potential barrier for n�-n-n� diodes. The dashed and
dotted curves represent the local equilibrium Maxwellian and
the distribution function under the ballistic limit, respectively.
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singular when electron’s kinetic energy is small, i.e.,
when they reside close to the band edge.

To clarify the structure of the singularity involved in
Eq. (2), we scale that

	v
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where vth��
�����������������
kBT0=m

p
� is the thermal velocity, �c is the

relaxation time in the channel region, and N0 is the
impurity density in high-doped S and D regions.
Eliminating the argument " for brevity, Eq. (2) reduces to

	v� 	x�
d 	f� 	x�
d 	x

� � 	f� 	x� � 	feq� 	x�: (5)

Expanding the electrostatic potential V�x� around x � xb,
electron’s energy " is approximated as " ’ mv2

2 �

eV�xb� �
�x�xb�2

2 eV00�xb�. Hence, electron’s scaled velocity
takes the form

	v 2 �
2

mv2
th
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2g; (6)

where 	� 
 "�eV�xb�
kBT0

�� 0� and �b 
 e�2cV00�xb�
2m �>0�. 	� repre-

sents electron’s kinetic energy measured from the top of
the potential barrier at xb and �b is the parameter.
Equation (6) is valid when j 	x� 	xbj<min��	xm; 	xD �
	xb	 for the left-moving electrons (v < 0) or when j 	x�
	xbj<min��	xm; 	xb � 	xS	 for the right-moving electrons
(v > 0), where �	xm 
 j 3V

000�xb�
V00�xb�

j.
A rough estimation makes the physical interpretation

of the parameter �b clear. Considering the left-moving
electrons (v < 0), �b is approximately expressed as �b �
e�2c�Va���b�

mL2
c

� vd�c
Lc

, where Lc � xD � xS and vd is the drift

velocity. Therefore, �b characterizes the ballisticity (or
diffusivity) of electron transport in the device: the bal-
listic and diffusive transport correspond to the limit of
�b ! 1 and �b ! 0, respectively. Table I shows typical
values of �b for n�-n-n� diodes calculated by using the
potential profile determined by the conventional drift-
diffusion simulations.

Noting that the local equilibrium distribution function
is written as 	feq� 	x��

	n�����
2


p e�� 	���b� 	x� 	xb�2	 with 	n�n�x�=N0,

Eq. (5) now takes the form

f 	�� �b� 	x� 	xb�2g1=2
d 	f
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p
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(7)

for the left-moving electrons (v < 0). Hereafter, we only
consider the case v < 0 ( 	x > 	xb), which is responsible for
generating the negative-velocity component of the distri-
bution function f�xb; v < 0�. We would like to stress
again that the coefficient of the first derivative in
Eq. (7) could be indefinitely small when the kinetic en-
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TABLE I. Ballisticity parameter �b and the size of the
transition region �	x0 for n�-n-n� diodes. It is assumed that
the kinetic energy at x � xb is 	� � 1, the applied voltage is
Va � 0:2 V, the effective mass is m � 0:322me (me: electron
mass), the relaxation time is �c � 50 fs, and the doping den-
sities in n� and n regions are 1020 and 1018 cm�3, respectively.

Lc (nm) �b �	x0 (�x0 nm)

10 5.978 0.4090 (2.429)
15 3.651 0.5233 (3.109)
30 1.406 0.8434 (5.010)
50 0.7210 1.178 (6.996)

100 0.3459 1.700 (10.10)
200 0.1694 2.430 (14.43)
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FIG. 3. Distribution function f�x; v < 0� with fixed 	� � 0:1
along the channel for �b � 0:1, 0.5, 1, 5, 10. The vertical
arrows represent the boundary between Region I and II.
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ergy 	� is small and electron approaches the top of the
potential barrier at 	xb. It is well known that the solution
for such differential equations exhibits the boundary layer
structure in which the solution changes very rapidly in the
layer region near xb [8]. It is, therefore, crucial to keep in
mind the magnitude of both 	� and �b� 	x� 	xb�2 when it is
expanded.

We now derive an analytical solution for Eq. (7). We
suppose that �b is large (quasiballistic regime). We write
the coefficient of the first derivative in Eq. (7) as

f 	�� �b� 	x� 	xb�
2g1=2 � �1=2

b � 	x� 	xb�
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Notice that the expansion is nonuniform for j 	x� 	xbj �
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Assuming that 	n is constant in the channel region, the
solution for Eq. (9) is given by
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where ��a; z� is the incomplete gamma function defined
by ��a; z� �

R
1
z dte�tta�1. To obtain the solution, we

have assumed that the distribution function 	fI� 	x� decays
to zero as 	x approaches 	xm, where 	xm � min� 	xb �
�	xm; 	xD�. This is justified because the number of ballistic
electrons reaching the potential barrier at xb from the D
region is negligibly small if the applied voltage Va is
much greater than kBT0=e.

In the other region such that j 	x� 	xbj<�	x0 (Region II),
	� > �b� 	x� 	xb�

2 and thus we may approximate Eq. (7) as
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The solution for Eq. (11) is given by
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where 	x0 � 	xb ��	x0 and we have assumed that
lim	x! 	x0�0

	fII� 	x� � lim	x! 	x0�0
	fI� 	x�. Using the Heaviside

unit step function "�x�, the velocity distribution function
	f� 	x� for 	x � 	xb is finally given by

	f� 	x� � 	fI� 	x�"� 	x� 	x0� � 	fII� 	x�"� 	x0 � 	x�: (13)

From the above derivation of the analytical solution of
the BTE, it is clear that the size of the transition region
�	x0, which corresponds to the size of Region II, plays a
crucial role in determining the velocity distribution func-
tion f�x; v < 0�. The size of �	x0 for n�-n-n� diodes with
various Lc is listed in Table I. When Lc is large so that
�b < 1 (diffusive regime), �	x0 is large and Region II
dominates in shaping the velocity distribution function
f�xb; v < 0�. This implies that the electrons around the
potential barrier are thermalized and f�xb; v < 0� is ap-
proximated by the thermal equilibrium distribution. On
the other hand, as Lc shrinks, �	x0 becomes small.
However, Region II cannot be ignored because it is also
associated with the layer region.
3-3



-0.1

0

0.1

0.2

0.3

0.4

0.5

-4 -3 -2 -1 0 -2 -1 0 -2 -1 0 -2 -1 0 -2 -1 0 -2 -1 0

BTE
theory

D
is

tr
ib

ut
io

n 
F

un
ct

io
n 

 f(
x b

,v
<

0)
/n

(x
b
)

Velocity  v/vth

Lc = 10 nm 15 nm 30 nm 50 nm 100 nm 200 nm

FIG. 4 (color online). Velocity distribution functions
f�xb; v < 0� obtained from the present theory (dotted lines)
and from the BTE (solid lines). The values of �b listed in
Table I have been used.

PRL 93, 246803 (2004) P H Y S I C A L R E V I E W L E T T E R S week ending
10 DECEMBER 2004
Figure 3 shows how the distribution function with
negative-component velocity f�x; v < 0� grows as elec-
trons approach the potential barrier at x � xb from the
right D region for various �b. The kinetic energy at x �
xb is fixed to 	� � 0:1. The solution grows rapidly near the
top of the potential barrier at xb and indeed exhibits a
boundary layer structure. Even when �b is large, f�x; v <
0� grows very rapidly in a thin region, whose length is
much smaller than the mean-free path (�6 nm). This
tendency is particularly strong as 	� is small, i.e., as
electrons reside close to the band edge at x � xb.
Therefore, Region II as well as Region I cannot be
ignored no matter how small Lc is. Notice that the number
of electrons coming ballistically from the D region is
negligible and thus the ballistic limit corresponds to
ignoring both Region I and II.

Figure 4 shows the velocity distribution functions at
the top of the potential barrier f�xb; v < 0� obtained from
Eq. (13) and from the numerical calculations of the BTE
for n�-n-n� diodes with various channel lengths Lc. Note
that the present theory contains essentially no adjustable
parameter. The agreement between the two results is ex-
cellent and it justifies the assumption that 	f� 	x� decays to
zero as 	x approaches 	xm. In other words, f�xb; v < 0�
entirely results from scatterings in the channel region.
This is physically interpreted as follows. When electrons
pass around the top of the potential barrier, their veloc-
ities could be indefinitely small. As a result, electrons
spend longer time around the potential barrier and suffer
scatterings. These electrons are, therefore, quasithermal
and have the same origin found in longer devices.

The present analyses entirely rely on the RTA. Since the
key idea lies in the singular nature inherent in the BTE
under the RTA, the question is whether a singularity
remains present in the BTE with the full collision inte-
gral. Considering the fact that the full collision integral
could be reduced to the RTA if the band structure is
isotropic and the scattering is elastic [9], we expect that
24680
a similar singularity is still preserved in the full BTE.
However, we should mention that, if elastic acoustic pho-
non scattering is the only dominant scattering, the scat-
tering rate approaches to zero as electron energy
diminishes. In this case, the present arguments would
break down and the energy-dependent RTA should be
employed [10]. Nevertheless, in nonpolar semiconductors
such as bulk Si or Ge, optical phonon scattering (absorp-
tion) among the equivalent valleys also takes place at
room temperature. In polar semiconductors, the polar
optical phonon scattering (absorption) is active. The scat-
tering time is then finite in both cases even when electron
energy becomes close to zero. Therefore, we expect that
the present results would not be changed significantly in
many cases unless inelastic scatterings are prohibited
somehow [11].

In conclusion, we have theoretically investigated qua-
siballistic electron transport in nanoscale semiconductor
structures by solving the BTE under the RTA. It has been
shown that the solution of the BTE exhibits a boundary
layer structure near the potential barrier and the scatter-
ings in the channel region cannot be neglected even in
nanoscale structures.
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