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A new numerical method for the solution of the dynamical mean field theory’s self-consistent
equations is introduced. The method uses the density matrix renormalization group technique to solve
the associated impurity problem. The new algorithm makes no a priori approximations and is only
limited by the number of sites that can be considered. We obtain accurate estimates of the critical values
of the metal-insulator transitions and provide evidence of substructure in the Hubbard bands of the
correlated metal. With this algorithm, more complex models having a larger number of degrees of
freedom can be considered and finite-size effects can be minimized.
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Great theoretical progress in our understanding of the
physics of strongly correlated electron systems has been
possible since the introduction of the dynamical mean
field theory (DMFT) [1,2]. It has allowed the successful
investigation of model Hamiltonians relevant for prob-
lems as diverse as colossal magneto-resistance, heavy
fermions, metal-insulator transitions (MI), etc. [3].
Presently, the field of realistic band-structure calculations
of strongly correlated systems in which density functional
theory is blended with DMFT is undergoing a burst of
activity as was highlighted by Kotliar and Vollhardt [4].
In that approach, DMFT is the local correlation physics
‘‘engine’’ that brings in the many-body effects lacking in
ab-initio methods [5,6]. In addition, unlike earlier ap-
proaches [7], in DMFT, no approximations are made on
the dynamics; therefore, one obtains detailed informa-
tion on distribution and transfers of spectral weights that
are relevant for the interpretation of experiments such as
photoemission, optical conductivity, and scanning tun-
neling microscopy. A successful and reliable theory of
real strongly correlated materials is one of the current
main challenges in condensed matter physics.

At the heart of the DMFT method is the solution of an
associated quantum impurity model where the environ-
ment of the impurity has to be determined self-con-
sistently. Therefore, the ability to obtain reliable DMFT
solutions of lattice model Hamiltonians relies directly on
the ability to solve quantum impurity models. Since
solutions of general impurity models are usually not ana-
lytically tractable, one has to resort to numerical algo-
rithms or approximate methods. Among the a priori exact
numerical algorithms available we count the Hirsch-Fye
Quantum Monte Carlo [8] method and Wilson’s numeri-
cal renormalization group (NRG) [9]. The former is a
finite-temperature method that is formulated in imagi-
nary time and has been applied to a large variety of
impurity models including the multiorbital case that cor-
responds to correlated multiband lattice Hamiltonians
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[10]. While this method is very stable and accurate and
allowed for detailed investigations of fundamental prob-
lems such as the metal-insulator transition in the
Hubbard model [3,11], its main drawback is that the
access to real frequency quantities such as spectral func-
tions requires to recourse to less controlled techniques for
the analytic continuation of the Green functions. The
second numerical method is based on Wilson’s renormal-
ization group [12,13]. This method can be formulated
both at T � 0 and finite (small) T providing accurate
results at small frequencies; thus it is very adequate for
the investigation of correlated metallic phases with heavy
effective-mass quasiparticles. The cost to pay is that the
description of the high energy features involve approx-
imations and cannot be so accurately obtained [14].

The goal of the present work is to introduce a new
algorithm for the solution of the DMFT self-consistent
equations that makes use of another powerful numerical
methodology for the solution of many-body Hamilton-
ians: the density matrix renormalization group (DMRG)
[15]. This method, like the NRG, has the appealing
feature of making no a priori approximations and the
possibility of a systematic improvement of the quality of
the solutions. However, unlike NRG, it is not formulated
as a low-frequency asymptotic method [14] and thus may
provide equally reliable solutions for both gapless and
gapfull phases. More significantly, it provides accurate
estimates for the distributions of spectral intensities of
high frequency features such as the Hubbard bands that
are of main relevance for analysis of x-ray photoemission
and optical conductivity experiments.

We shall illustrate the new formulation with the solu-
tion of the, by now classic, Mott transition in the Hubbard
model. We shall show that accurate estimates of the criti-
cal interactions for the metal-to-insulator and for the
insulator-to-metal transitions at T � 0 can be obtained,
and, interestingly, we find evidence of substructure in the
Hubbard bands in the correlated metallic phase.
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FIG. 1. Half-filled Hubbard model density of states
( 1
� ImG�!	) [25] pinning.
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The Hamiltonian of the Hubbard model is defined by

H � t
X

hi;ji;�

cyi;�cj;� �U
X
i

ni;#ni;": (1)

The treatment of this model with DMFT leads to a
mapping of the original lattice model onto an associated
quantum impurity problem in a self-consistent bath. In
the particular case of the Hubbard model, the associated
impurity problem is the single impurity Anderson model
(SIAM), where the hybridization function ��!	, which in
the usual SIAM is a flat density of states of the conduction
electrons, is now to be determined self-consistently. More
precisely, for the Hamiltonian (1) defined on a Bethe
lattice of coordination d, one takes the limit of large d
and exactly maps the model onto a SIAM impurity prob-
lem with the requirement that ��!	 � t2G�!	, where
G�!	 is the impurity Green’s function. At the self-
consistent point, G�!	 coincides with the local Green’s
function of the original lattice model [3]. The half-
bandwidth of the noninteracting model is our energy
unit, 2t � 1.

A central quantity in this algorithm is the noninter-
acting Green’s function of the impurity problem, G0�!	�
1=
!�����!	��1=
!��� t2G�!	�. Thus, to
implement the new algorithm we shall consider
[16,17] a general representation of the hybridi-
zation function in terms of continued fractions that de-
fine a parametrization of ��!	 in terms of a set of real
and positive coefficients. Since it is essentially a Green’s
function, ��z	 can be decomposed into ‘‘particle’’
and ‘‘hole’’ contributions as ��z	 � �>�z	 ��<�z	
with �>�z	 � t2hgsjc 1

z��H�E0	
cyjgsi and �<�z	�

t2hgsjcy 1
z��H�E0	

cjgsi for a given Hamiltonian, H, with
ground-state energy, E0. By standard Lanczos technique,
H can be in principle tridiagonalized and the functions
�>�z	 and �<�z	 can be expressed in terms of respective
continued fractions [18]. Each continued fraction can be
represented by a chain of auxiliary atomic sites whose
energies and hopping amplitudes are given by the con-
tinued fraction diagonal and off-diagonal coefficients,
respectively, [16,17].

From the self-consistency condition, the two chains
representing the hybridization are ‘‘attached’’ to the right
and left of an atomic site to obtain a new SIAM
Hamiltonian, H. In fact, G0�z	 constitutes the local
Green’s function of the site plus chain system.

The algorithm in Refs. [16,17] basically consists in
switching on the local Coulomb interaction at the impu-
rity site of the SIAM Hamiltonian and uses the Lanczos
technique to reobtain ��z	, iterating the procedure until
the set of continued fractions coefficients converges.

A great limitation of this procedure is that the number
of auxiliary atomic sites that needs to be used in the
hybridization chains is too large for standard exact diag-
onalization schemes. Therefore, the chains have to be cut
at very short lengths, and as a consequence, the method
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becomes approximate with sizable finite-size effects. In
the present work, we shall make a fundamental improve-
ment on this scheme, namely, diagonalizing the Hamil-
tonian using DMRG, which in principle allows to handle
chains of arbitrary length [19].

The SIAM Hamiltonian therefore reads

H �
XNC

�;���NC;��0

a�c
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with c� being the destruction operator at the impurity
site, and c�� being the destruction operator at the � site
of the hybridization chain of 2NC sites. The set of pa-
rameters fa�; b�g are directly obtained from the coeffi-
cients of the continued fraction representations of ��z	 by
the procedure just described. An important point to make
is that while the hopping to an impurity connected to a
chain bears a resemblance to the NRG method, the
present formulation is different in a crucial aspect: unlike
NRG, it is not constructed as an asymptotically exact
representation for low frequencies, but rather treats all
energy scales on equal footing. By paying the price of
giving up the excellent resolution at low-frequency of
NRG, we shall gain in exchange a controlled and system-
atic algorithm operating at all energy scales. As in
Wilson’s NRG, the energy resolution depends on the
length of the auxiliary chain; considering longer chains
while keeping the numerical accuracy in the computation
is the central limitation of the current scheme. In practice,
systems of up to 45 (NC � 22) sites were considered.

In Fig. 1 we show the DMFT� DMRG results (solid
lines) for the density of states (DOS) for several values of
increasing interaction U. The results are compared to the
iterated perturbation theory (IPT) results (dashed lines)
[1,20]; IPT is a useful analytic approximate method that
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can be solved on the real frequency axis at T � 0. In
Fig. 2 we compare the DMFT� DMRG results (solid
lines) for the imaginary part of the Green’s function on
the imaginary frequency axis with the corresponding
ones obtained by quantum Monte Carlo solution of the
DMFT equations at a low temperature (circles). We see
that the overall agreement on the real axis is very sat-
isfactory and on the Matsubara frequency axis it is ex-
cellent. At low values of U, we find a metallic state
characterized by a narrow quasiparticle feature at low
frequencies. Increasing U, this peak gets narrower by
transferring spectral weight to features at higher energies
of order U, the upper and lower Hubbard bands. At large
values of the interaction, the system evolves toward an
insulator with a gap of order U [Fig. 3(c)].

A very important feature of the metal-insulator tran-
sition in the paramagnetic state of the Hubbard model at
half filling [3] is that there are two distinct critical values
of the interaction associated with the transition: Uc1 and
Uc2. The former signals the insulator-to-metal transition
obtained upon lowering the interaction, while the latter
corresponds to the metal-to-insulator transition obtained
when the Fermi liquid is destroyed by increasing the
interaction strength. We obtained estimates of these two
values that are consistent with those from NRG calcula-
tions [12]. We find Uc1 � 2:39� 0:02 and Uc2 � 3:0�
0:2. Because of the nature of this algorithm and the
arguments presented before, we expect that our determi-
nation of Uc1 should be more accurate than NRG (and all
other previously used T � 0 methods). Our criterion for
the investigation of metallic versus insulating states was
based on the behavior of the spectral weight at zero
frequency and the size of the gap in the DOS (given by
the energy of the first pole). It was a remarkable finding
that these quantities showed an unexpected dramatic
dependence with the length of the hybridization chain
and the proximity to the critical value of the interaction.
This dramatic effect is demonstrated in Fig. 3, where we
plot the results as a function of the inverse of the chain
length at U � 2:3 [Fig. 3(a)] and U � 2:5 [Fig. 3(b)]. We
find that as U is increased from the weak coupling (me-
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FIG. 2. Imaginary part of the Green functions at imaginary
(Matsubara) frequencies (solid lines). We also show quantum
Monte Carlo results (circles) at low temperature T � 1=32.
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tallic) side, chains longer than a U-dependent value Lc

were required to converge to metallic solutions [Fig. 3(d)].
The value of Lc was in fact found to diverge at a finite
interaction strength that we identified with our estimate
of Uc2. As long as the length L � Nc < Lc, the solution
looks as that of an insulating state with vanishing DOS at
! � 0, while a rapid crossover to a metallic solution is
seen as L goes beyond the threshold value Lc. This
resembles the behavior of the Kondo effect in finite sys-
tems [21], where the Kondo effect is suppressed if the
Kondo screening cloud is larger than the system size. This
similarity also shows up in the increase of Lc with U, as
in the Kondo model the correlation length increases with
the interaction.

For the insulator-to-metal transition, the value of Uc1

can be determined by the closure of the gap in the DOS or
using the inverse of the second moment of the DOS [22],
Fig. 3(c). Any of these two quantities are nonzero in the
insulating state and vanish at Uc1.

Another interesting result that has been a matter of
debate, and might have implications for the analysis of
x-ray photoemission spectra, is the question of the exis-
tence on substructure in the Hubbard bands of the corre-
lated metallic state. The substructure was first identified
within approximate calculations [20,23], but the exact
numerical methods did not have the required accuracy
to decide whether the substructure was an artifact borne
out of the approximations or a real feature of the model’s
solution. In fact, an appealing physical interpretation of
the substructure can be readily made: in a rigid band
picture, one can think of the action of the local interac-
tion U to ‘‘split’’ and replicate the hybridization function
density of states ��!	 at frequencies �U=2. This in fact
gives a simple qualitative understanding of the emergence
of Hubbard bands in the insulator when U is large. The
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FIG. 3. DOS at the Fermi energy (squares) and gap (circles)
for (a) U � 2:3 and (b) U � 2:5. Open (closed) symbols cor-
respond to metallic (insulating) solutions. The thick arrow
shows the critical length (Lc) above which a metallic solution
is obtained. (c) Gap (circles) and inverse of the second moment
of the DOS (diamond) as a function of U. The values corre-
spond to extrapolations to infinite-size chains. (d) 1=Lc as a
function of U.
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semicircular ��!	 is duplicated into the two (approxi-
mate) semicircles at �U=2 of the local DOS (the imagi-
nary part of G�!	) characteristic of the Mott-Hubbard
insulator. Then one realizes that the self-consistency re-
quires ��!	 to coincide with t2G�!	; thus, if Im
G�!	�
develops (multipeak) structure, it implies that ��!	 has a
similar structure. Then, by the simple-minded argument
in which the action of U is to ‘‘split and replicate,’’ we get
(multipeak) structures for the Hubbard bands at �U=2 in
the DOS, in a self-consistent manner. In Fig. 4 we show
the comparison of the DOS of the model for both the
correlated metallic and insulating solutions at the same
value of the interaction U � 2:5 (i.e., between Uc1 and
Uc2). The results show that the smooth envelope of the
pole structure (due to a finite Nc forming the lower and
upper Hubbard bands in the insulator) acquires more
structure in the metallic state. For comparison, we also
plot the corresponding results from NRG [24] and IPT.
The former fails to capture any qualitative difference
between the shape of the metallic and insulating
Hubbard bands; however, IPT shows a very smooth shape
for the insulator [cf. Fig. 1(c) and 1(d)] and a multipeak
structure in the metallic Hubbard bands. The structure of
IPT is in qualitative agreement with the spectral distri-
bution of weight born out from the DMRG calculation. To
our knowledge, this is the first strong evidence of the
existence of nontrivial structure in the Hubbard bands
within DMFT.

To conclude, we have presented a new algorithm to
solve the DMFT equations of strongly correlated models
exploiting the DMRG methodology. Large systems can
be considered and accurate values of the critical interac-
tions are obtained in agreement with NRG predictions,
allowing for a nontrivial test of the accuracy of this
method. In contrast with NRG, however, this new algo-
rithm deals with all energy scales on equal footing, which
allowed us to find interesting substructure in the Hubbard
bands of the correlated metallic state. The ability of the
new algorithm to directly deal with the high energy scales
24640
is a very important feature that is relevant for the inter-
pretation of the high resolution photoemission spectros-
copies that are becoming available from the new
generation sinchrotron machines [4]. In addition, this
method could also handle more general models having a
larger number of degrees of freedom such as the multi-
orbital Hubbard models required for realistic band-
structure calculations of strongly correlated systems.

We thank R. Bulla for the NRG data and B. Alascio for
useful discussions. We acknowledge support from
CONICET (PEI6360), Fundación Antorchas (14116-
168), and ANPCyT PICT 03-06343 and 03-11609.

Note added.—During the review process we became
aware of a related work by S. Nishimoto et al. using a
different DMRG method.
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