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Lattice Thermal Conductivity Crossovers in Semiconductor Nanowires
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For binary compound semiconductor nanowires, we find a striking relationship between the nano-
wire’s thermal conductivity �nwire, the bulk material’s thermal conductivity �bulk, and the mass ratio of
the material’s constituent atoms, r, as �bulk=�nwire / �1� 1=r��3=2. A significant consequence is the
presence of crossovers in which a material with higher bulk thermal conductivity than the rest is no
longer the best nanowire thermal conductor. We show that this behavior stems from a change in the
dominant phonon scattering mechanism with decreasing nanowire size. The results have important
implications for nanoscale heat dissipation, thermoelectricity, and thermal conductivity of
nanocomposites.
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Considerable progress has recently been made in the
synthesis and characterization of semiconducting nano-
wires [1]. The interest in these systems stems from their
great potential for nanoelectronic [2] and thermoelectric
[3] applications, and also as fillers for nanocomposite
materials [4]. Consequently, it is especially important to
know how these nanowires conduct heat. It has been
shown that nanowire thermal conductivity may be con-
siderably lower than that of the bulk material [5]. This
could have dramatic implications for heat dissipation in
nanodevices [6], where a high thermal conductivity might
be desirable, or for thermoelectrics, where the goal is to
minimize the lattice thermal conductivity [3,7]. Several
experiments have measured thermal conductivity of sus-
pended structures: GaAs suspended microstructures [8],
individual carbon nanotubes [9], Si nanowires [5], and
SnO2 nanobelts [10]. Some of these experiments have
been theoretically addressed [10–15].

One important question to ask is: to what extent does
the bulk thermal conductivity of a material determine the
thermal conductivity of a nanowire made of that mate-
rial? One might trivially assume that the higher the bulk
material’s thermal conductivity, the higher the nanowire’s
thermal conductivity. Here we show that this is not the
case. We prove that the ratio of bulk to nanowire thermal
conductivity is directly related to the mass ratio of the
constituent atoms in a nontrivial way. Hence, the fact that
a bulk material ‘‘A’’ has a higher lattice thermal conduc-
tivity than another bulk material ‘‘B’’ does not imply that
the same will hold true for nanowires made of these
materials. In some cases, a nanowire of material B can
have a higher conductivity than a nanowire of material A
of the same thickness. We explicitly show this by theo-
retical calculation of ten different compound semicon-
ductors of the zinc blende structure. The specific
dependence of the conductivities on the mass ratio is
theoretically derived and computationally verified.
Implications for different fields are also discussed.
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To describe the harmonic properties of the atomic
lattice we employ the potential proposed by Harrison
[16], equivalent to a Stillinger-Weber type potential
[17,18] in the harmonic limit. The harmonic part of the
Hamil-
tonian has the form
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where the u’s are the displacement vectors with respect to
the equilibrium positions, dij is the distance between
nearest neighbor atoms i and j, and ��ijk is the change
in angle between the i; j and j; k bonds. The sums are
extended to all the neighbor pairs and triplets in the
system. We take the nanowire direction to be along
[111], which we define as the z direction. The nanowire
unit cell consists of two adjacent cross-sectional atomic
layers and the atoms at the boundary of the wire are taken
to be frozen [19]. The potential derivatives defining Kij

are obtained analytically and used to calculate the nano-
wire phonon dispersions, !��kz�. Here, � is the nanowire
phonon branch index and kz the wave number along the
wire.

The two force constants C0 and C1 correspond to the
two-body stretching and three-body bending terms, re-
spectively. For each material, we computed the bulk
phonon dispersion relations, adjusting these constants to
exactly match the experimental frequency values [20–23]
of the zone center longitudinal optical mode,!LO���, and
the zone edge transverse acoustic mode, !TA�X� (Table I.)

The next task is to solve for the phonon transport
through the wire, for any arbitrary diameter. The solution
of the linearized Boltzmann transport equation in the
relaxation time approximation yields the following ex-
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FIG. 1. Lattice thermal conductivity as a function of diame-
ter for III-V (italics) and II-VI (bold) groups, at 300 �K.

TABLE I. Force constants, average speed of sound in the
(111) direction, and mass ratio, for each of the materials. The
force constants were adjusted by fitting the TA�X� and LO���
frequencies to experimental values[20].

C0 (eV) C1 (eV) v111�10
3 m=s� r

CdTe 34.57 0.357 2.08 1.14
ZnTe 30.47 0.604 2.97 1.95
ZnSe 32.98 0.690 3.18 1.21
ZnS 35.90 0.704 4.39 2.04
InSb 46.72 0.400 2.3 1.06
InAs 42.13 0.650 2.6 1.53
GaSb 39.20 0.658 2.8 1.75
GaAs 42.04 0.826 3.3 1.07
AlSb 42.02 0.774 3.4 4.51
InP 47.38 0.715 3.04 3.71
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pression for the thermal conductivity [15]:
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where s is the wire cross section, vz is the phonon velocity
in the axial direction, ���kz� is the phonon relaxation
length, and fB � 1

e �h!=kBT�1
. Here it is essential to use the

complete dispersion relations of the system [15]. The
problem of how to properly include the boundary scatter-
ing was exactly solved by Dingle [24], actually in con-
nection with the theory of electron transport. The
application of Dingle’s approach to phonon transport has
been discussed in Refs. [25,26]. Dingle’s solution assumes
that the bulk material’s dispersions are isotropic, which is
reasonable for the materials considered [25]. For the
cylindrical wires treated here, with diffuse boundary
scattering, it is not difficult to prove that Dingle’s exact
solution yields almost identical results as if one uses
Eq. (3) with a Mathiessen rule for the phonon relaxation
length, ��1 � ��1

i � 1=D. Here ��!� is the total relaxa-
tion length, �i�!� is the intrinsic relaxation length in bulk
due to anharmonic and impurity scattering, and D is the
wire’s diameter. A very good approximation for the in-
trinsic relaxation length is [27] ��1

i v � #�1
i �

BT!2e�C=T � A!4, where v is an averaged isotropic
acoustic phonon group velocity, while B, C, and A are
constants that are fit using experimental measurements of
the bulk thermal conductivity for the particular material.
Results using Mathiessen’s rule only deviate from the full
Dingle type calculation by at most a few percent.

The procedure is then as follows: we compute the
thermal conductivity as a function of temperature for
the bulk material, adjusting the two anharmonic parame-
ters B and C in order to obtain a best fit of the experi-
mental bulk thermal conductivity, as described in
Ref. [15]. The experimental curves of Refs. [28,29] were
used for this. Once this has been done, the thermal con-
ductivity is calculated for wires of any diameter. This
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approach has proven to yield very good results for Si
nanowires [15] and SnO2 nanobelts [10], in agreement
with experimental results.

The results of the thermal conductivity calculation as a
function of wire diameter are shown in Fig. 1 for the ten
materials at 300 K. Each curve tends to its constant bulk
value when D is large, and it approaches linear behavior
in D at small diameter values. All curves present a mono-
tonic decrease upon diameter reduction. However, the
amount of decrease is by no means uniform throughout
the ten materials. Several facts are apparent from the
graph:

(1) Some curves run almost perfectly proportional to
each other: the curves for CdTe and ZnSe run equidistant
to each other in the log-log plot, with the conductivity
changing by about 0.9 orders of magnitude between the
bulk and 30 nm wire cases; the curves for ZnTe and ZnS
are also nearly proportional, but now the conductivity
change is nearly 1.1 orders of magnitude.

(2) The decreases are generally larger in the III-Vgroup
than in the II-VI group.

(3) There are line crossovers: we can see a crossover
between the GaAs and InP curves; also, the curve for
ZnSe is very close to that for ZnTe in the bulk, but it splits
off for smaller diameters, and it approaches the ZnS curve
when D	 30 nm.

To understand the above facts we must answer the three
following questions: (1) What physical reason determines
whether two materials have proportional curves or not?
(2) From where does the smaller decrease in the II-VI
group originate? (3) When can we expect two materials to
show a crossover?

The answers stem from the change in the dominant
scattering mechanism in going from bulk to nanowire. In
the thin nanowire limit, or Casimir limit, phonon scat-
tering is dominated by the boundary, and the relaxation
time is #	D=v. For ease of reasoning, let us make the
standard high temperature approximation 1

1�e �h!=kBT
’ kBT

�h! .
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Neglecting the small contribution of optical phonons, and
approximating the dispersion branches by constant veloc-
ity hypercones, the thermal conductivity is roughly pro-
portional to [15]
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Let Ml and Mh be the masses of the lighter and heavier
atom, respectively, in the material’s unit cell. The upper
limit of the longitudinal acoustic branch, !LA, depends
on the mass of the heavier component atom only, as
!LA / 1=

�������
Mh

p
. This can be verified directly on Eq. 9-5

in Harrison [16]. Although it is not possible to give an
analytical expression for the transverse acoustic fre-
quency !TA, numerical calculation shows that it is nearly
proportional to !LA upon mass variations, and its depen-
dence on Ml is very weak. The speeds of sound depend on
the masses as v / 1=

�������������������
Ml �Mh

p
, which can be verified by

direct differentiation of Eq. 9-5 in Ref. [16]. Therefore, we
can approximately write

�nwire / !3
LA=v

2; (5)

which depends on the masses as �nwire / �Ml �

Mh�=M
3=2
h . (v is the average speed of sound.) On the other

hand, the bulk thermal conductivity can be roughly ap-
proximated by [7,29]

�bulk 	 c�Ml �Mh�'
3
D=T; (6)

where 'D is the value of the material’s experimental
Debye temperature. [Constant c � 3:5�kB=h�

3V1=3=)2 is
nearly equal for all the materials. V � volume per atom,
) � Gr�uneisen constant.]
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FIG. 2. Ratio of bulk to nanowire (30 nm) thermal conduc-
tivities, as a function of �1� 1=r��3=2. r is the mass ratio of the
binary material. The decrease in thermal conductivity with
respect to its bulk value is larger for materials with mass ratios
very different than 1. Squares: III-V materials. Circles: II-VI
materials.
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'D depends on the masses as �Ml �Mh�
�1=2, so �bulk /

�Ml �Mh�
�1=2. Consequently, the mass dependence of

the ratio between the bulk and nanowire thermal conduc-
tivities takes place only through the mass ratio r � Mh

Ml


1, as
�bulk=�nwire / �1=r� 1��3=2: (7)

Obviously, this relation is based on very rough assump-
tions, and it should be understood to be only qualitative.
Its meaning is that materials with r significantly higher
than 1 will display a larger decrease in thermal conduc-
tivity upon diameter reduction than materials with r ’ 1.
To verify whether this is true, we have plotted the ratio
�bulk=�30 nm against �1=r� 1��3=2 for the III-V and II-VI
materials in Fig. 2. Within each series, the values approxi-
mately lie along a straight line, proving the validity of the
qualitative dependence, Eq. (7).

The III-Vand II-VI zinc blende groups differ in that the
former are stiffer than the latter, when compared side by
side. This means that if one compares two materials,
XIII
m YV

n and XII
mYVI

n , where their first and second elements,
respectively, belong to the mth and nth rows of the peri-
odic table, the III-V material is always stiffer. For ex-
ample, the ratios between the bulk moduli of InSb=CdTe,
GaSb=ZnTe, GaAs=ZnSe, and GaP=ZnS are 1.1, 1.1, 1.27,
and 1.13 respectively [30]. This has implications in the
line slope for each group, in Fig. 2. Since !LA, v, and 'D
all increase with stiffness, its effect does not cancel out in
the ratio �bulk=�nwire [Eqs. (5) and (6)]. The smaller stiff-
ness of the II-VI group therefore results in a smaller slope
of the II-VI line in Fig. 2. This is a qualitative argument,
intended only to explain the different slope between the
groups, and one should not attempt to use it in any
quantitative manner. The effect of stiffness on the
�bulk=�nwire ratio results from a complicated interplay
throughout all frequencies in the phonon dispersions,
and it cannot be just described in terms of zero frequency
properties like the bulk modulus. Therefore, only the full
calculation, shown in Fig. 1, should be considered reliable
in estimating the bulk to nanowire ratio of the thermal
conductivities.

Thus we have the answer to the first and second ques-
tions posed earlier: (1) materials with similar mass ratios
have proportional curves, and they exhibit similar de-
crease of thermal conductivity, with the dependence
shown by Eq. (7). (2) Smaller stiffness of the II-VI mate-
rials results in overall smaller ratios of bulk to nanowire
thermal conductivity, as compared to III-V materials. The
answer to the third question, namely, ‘‘when can we
expect a crossover?’’ is also provided by the mass ratio
dependence. A crossover will most likely take place
between two materials of the same group if the following
conditions apply: (a) the components of material ‘‘A’’
with higher �bulk are in different rows of the periodic
table and have considerably different masses, (b) those of
material ‘‘B’’ with lower �bulk belong to the same row,
and (c) the ratio of the two materials’ bulk thermal
-3
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conductivities is �Abulk=�
B
bulk & 1:5. The last condition

comes from Eq. (7) and the fact that rA * 2 and rB 	 1.
A clear case is that of InP, which crosses below GaAs
already at D	 0:1 +. In the case of ZnS and ZnSe, the
bulk values’ ratio is too large, and a crossover does not
occur until D	 101 nm.

The results obtained have important implications. One
of them concerns the suitability of these nanowires for
thermoelectric devices, which is measured by the thermo-
electric figure of merit, Z. Z is inversely proportional to
the material’s thermal conductivity. Although II-VI bulk
materials have lower thermal conductivities than III-V, the
gain in Z due to thermal conductivity reduction is not as
large in II-VI as in III-V nanowires. The electronic prop-
erties of III-V nanowires are overall better than those of
II-VI nanowires towards achieving a high Z. This, com-
bined with the higher gain due to � reduction, makes III-
V nanowires more favorable than II-VI for thermoelectric
applications [31].

Another important implication concerns heat dissipa-
tion. If one’s goal were to drive heat quickly through a
semiconducting nanowire of definite thickness, the best
choice would not be InP, despite its high thermal con-
ductivity in bulk. Instead, GaAs might be used with about
50% better conduction.

Finally, a third implication concerns the thermal con-
ductivity of nanocomposites. Novel composite materials
consisting of aggregates of nanowhiskers into a ceramic
matrix have shown great promise in terms of their im-
proved mechanical properties [4]. The thermal conduc-
tivity of these new materials is affected by the ability of
the filler nanowhiskers to conduct heat. As we have seen,
one cannot use the comparison between bulk conductiv-
ities of different materials as a guide towards what to
expect for nanowhiskers. When the thermal conductivity
is an issue, the choice of nanowhisker material cannot be
based on the same considerations used for regular
(macro) composites, but must account for the different
ratios and possible crossovers that take place between the
thermal conductivities of the nanoscale wires.

In conclusion, due to the change in dominant scattering
mechanism when going from bulk to nanowire, the best
bulk thermal conductor is not necessarily the best nano-
wire thermal conductor. In other words, the decrease in
thermal conductivity upon wire thickness reduction
varies considerably from one material to another. Within
binary semiconductors of the III-Vor the II-VI group, this
decrease is largely determined by the constituents’ mass
ratio, and roughly follows the approximate rule �b=�w /

�1�Mlighter=Mheavier�
�3=2. The very different thermal

conductivity reduction for different materials has impor-
tant implications for nanowire based thermoelectrics,
nanodevice heat dissipation, and in the thermal conduc-
tivity of nanocomposites.
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