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An explanation of the glasslike anomaly observed in the low-temperature specific heat of incom-
mensurate phases is proposed. The key point of this explanation is to properly account for the phason
damping when computing the thermodynamic magnitudes. The low-temperature specific heat of the
incommensurate phases is discussed within three possible scenarios for the phason dynamics: no
phason gap, static phason gap, and a phason gap of dynamical origin. Existing NMR and inelastic
scattering data indicate that these scenarios are possible in biphenyl, blue bronze K0:30MoO3, and bis (4-
chlorophenyl) sulfone respectively. Estimates of the corresponding low-temperature specific heat are in
reasonable agreement with the experiments.
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Deviations from the Debye law observed in the low-
temperature specific heat of incommensurate (IC) phases
have attracted some attention [1–4]. It is observed, in
particular, a quasilinear-in-T contribution to this specific
heat (C) at the lowest temperatures ( & 1 K) and, in some
compounds [1,2,4], a maximum in C�T�=T3 at tempera-
tures �10 K. It is expected that these peculiarities are
connected to the low-energy excitations specific to IC
phases, i.e., the phasons. Theoretical discussions try to
relate these phasons and the mentioned maximum in
C�T�=T3 [2,4]. As a result, this maximum is usually
ascribed to the existence of a gap in the corresponding
phason spectrum. The origin of the quasilinear-in-T con-
tribution, in contrast, has not been elucidated.
Nevertheless, due to its similitude to that observed in
glasses, this contribution inspires some speculation [4].

In this Letter we show that these peculiarities in the
low-temperature specific heat of IC phases have a natural
explanation. This explanation is based on a specific fea-
ture of phasons that is overlooked in the above cited
works: the phason damping. In fact, it follows from
general considerations that, even in perfect crystals, pha-
sons will be overdamped for small enough wave vectors
[5]. The phason damping in perfect crystals has a strong
dependence on temperature and vanishes for T � 0 [6].
Such a temperature-dependent damping, however, is not
consistent with the NMR [7,8] and the inelastic neutron
scattering data [9–11] reported for the IC phases in which
we are interested: the damping inferred from these ex-
periments is 12 orders of magnitude stronger than that
calculated for perfect crystals (see below). The phason
damping in real crystals may then be due to defects. To
the best of our knowledge, there is no theoretical calcu-
lations of such a defect-induced phason damping.
Anyway, for our purposes, this damping can be estimated
from the above mentioned experiments.

It is worth mentioning that, in some sense, phasons in
IC phases are analogous to vortons in superconducting
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vortex lattices. They both represent acoustical vibrations
of the corresponding IC structure that, unlike the ordi-
nary acoustical vibrations, are overdamped for small
enough wave vectors. In fact, it has already been found
that vortons yield a linear-in-T contribution to the low-
temperature specific heat of the corresponding vortex
lattice [12,13]. The key point of the theory we present
below coincides with that of the mentioned works on
vortex lattices: the proper accounting of the specific
thermodynamic features of the damped oscillators (pha-
sons in our case). We mention also that these specific
features have been found relevant even for ‘‘ordinary’’
crystals: optical vibrations in real crystals remain
damped due to defects down to zero temperature, so
they may give an important contribution to the corre-
sponding low-temperature specific heat [14]. In this
Letter we shall concentrate on IC phases mainly because
(i) the smallness of the phason frequencies increases the
importance of the phason damping and, consequently, of
the corresponding contribution to the specific heat and
(ii) the existence of experimental data characterizing the
phason dynamics makes it possible to estimate in orders
of magnitude.

Let us first consider, for the sake of illustration, the
simple case in which the phason spectrum shows a static
phason gap (due to ‘‘phase pinning,’’ see, e.g., Ref. [15]).
If the corresponding wave vector dispersion is negligible,
the phason branch becomes analogous to an optical one
within the Einstein approximation. The corresponding
contribution to the specific heat can then be computed
from the specific heat of an harmonic oscillator Cosc. But
to describe correctly the low-temperature regime in the
IC phases, it is crucial to take into account the phason
damping. This can be done by using the formalism of
Refs. [12,13,16]. As a result one obtains
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FIG. 1. Specific heat from Eq. (1) divided by T3 of a har-
monic oscillator for different dampings. Here units have been
chosen such that kB � �h � 1, the natural frequency of the
oscillator as !0 � 1 and the Drude frequency [16,17] !D �
104. A different scale in Cosc=T

3 is used in the plot for � � 10.
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where 	 � 2�kBT= �h,  0�x� � d2�ln��x��=dx2 is the tri-
gamma function, and the �’s are the roots of the equation
�3 	!D�2 	 �!2

0 	 �!D��	!D!2
0 � 0, with !0 the

natural frequency of the oscillator and � the damping
coefficient, i.e., the viscosity coefficient divided by the
mass of the oscillator. Here !�1

D is a memory time asso-
ciated with a Drude regularization of this viscosity damp-
ing (see, e.g., Ref. [16] and accompanying paper [17]). In
further considerations the limit !D ! 1 is taken. In this
limit, the regularized viscosity damping reduces to the
ordinary one.

The dependence on temperature of the specific heat in
Eq. (1) of a damped harmonic oscillator can be seen in
Fig. 1 for different values of the damping coefficient �. In
the undamped case (� � 0), it is well known that this
specific heat is exponentially small at low enough tem-
peratures (kBT � �h!0). For any finite damping, however,
the low-temperature asymptotic for the specific heat
Eq. (1) is linear in T:

Cosc 
T!0

�kB
3

�
!0

kBT
�h!0

: (2)

In an overdamped case (�� !0) this expression is valid
for kBT � �h!2

0=� while in an underdamped one (��
!0) it is for kBT � �h!0.

It is worth noticing the qualitative similitude, already
at this level of consideration, between this specific heat
and that reported in IC phases [1–4]. Of particular inter-
est is what concerns the linear-in-T dependence at the
lowest temperatures, which is connected to the damping
as we have seen. In the following we shall make more
concrete considerations.

Let us then consider the Landau thermodynamic po-
tential (see, e.g., Ref. [6,10])

� � �0 	
a
2
��2

1 	 �2
2� 	

b
4
��2

1 	 �2
2�

2 	
c
2
��r�1�

2

	 �r�2�
2�; (3)

where �1 and �2 are the real and imaginary part of the
complex order parameter � � ��1; �2�. In the IC phase
(a < 0), the equilibrium values can be taken such that
��eq�

1 � ��a=b�1=2 and ��eq�
2 � 0. Within the scheme of no

phason gap, which seems to be valid for biphenyl (see
below), for small deviations of the order-parameter com-
ponents from their corresponding equilibrium values:
�i � ��eq�

i 	 �0
i, one has the following equations of mo-

tion (see, e.g., Ref. [6]):

m ��0
1 	 �� _�1 � 2a�0

1 � cr2�0
1 � 0; (4a)

m ��0
2 	 �� _�2 � cr2�0

2 � 0: (4b)

Hence �1 is associated with longitudinal (amplitude)
fluctuations while �2 does with transverse (phase) ones.

In Eq. (4b) it is implicit that, as stated above, for small
enough wave vectors phasons are overdamped due to the
viscosity term �� _�2. At low enough temperatures the
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phason contribution to the specific heat will be linear in
T. From Eq. (2), this contribution can be estimated as

C 
k3
m

6�
k2
BT

�h�v2k2
m=��

(5)

for kBT= �h� min�vkm; v2k2
m=��, where v2 � c=m, � �

��=m and km represents the radius of the Brillouin zone.
(Here it has been assumed that the damping is the same
for the whole phason branch.) This linear-in-T contribu-
tion to the low-temperature specific heat of IC phases due
to phasons will prevails over the Debye one (due to
acoustic phonons) at temperatures T & ��=�vkm���,
where � � � �h=kB��V3=v�1=2km with V the velocity of
sound.

Let us mention that, in accordance with Eq. (4a), am-
plitude fluctuations of the order parameter (amplitudons)
are also damped. In consequence, they also give a linear-
in-T contribution to the specific heat at the lowest tem-
peratures. However, this contribution is always smaller
than the phason one because, for a given wave vector, the
amplitudon frequency is always greater than the phason
one, the corresponding damping coefficient being similar
2-2
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in both cases [see Eqs. (4) and (2)]. Indeed the amplitudon
contribution to the low-temperature specific heat of the IC
phases of interest is not essential to describe the corre-
sponding experimental data, so we shall omit this con-
tribution if further considerations.

Let us now consider the scheme of a dynamic phason
gap [10] (see also accompanying paper [17] for further
details). In some compounds such as bis (4-chlorophenyl)
sulfone (BCPS) the coefficients of the equations of mo-
tion for the order parameter may have some frequency
dispersion. A relatively simple dispersion is described by
the phenomenological model developed in Ref. [18] to
reproduce the central peak in the high-temperature phase
of strontium titanate. Such a dispersion can be understood
as a result of the linear coupling between the order
parameter and a relaxational variable � � ��1; �2�
[10,19]. The phason dynamics is then governed by the
following equations of motion:

m ��0
2 	 d2�0

2 � cr2�0
2 	 d�02 � 0; (6a)

�� _�02 	 �02 	 d�0
2 � 0: (6b)

Let us emphasize that the most important part of these
equations is not the extra variable �2 by itself, but the
frequency dispersion that this variable yields in the pha-
son dynamics. Strictly speaking, to reproduce the specific
features of, e.g., BCPS, i.e., gapped phasons and a central
peak, it is only this dispersion that would be necessary
(see below). However, to calculate the corresponding
phason contribution to the specific heat, it is convenient
to bear in mind that such a dispersion is obtainable from
Eqs. (6) (see accompanying paper [17] for further details).
Anyway, the resulting phason dynamic is different at
different time scales: while the slow oscillations are over-
damped (central peak), the rapid ones are not (gapped
phasons) [19]. The phason contribution to the low-
temperature specific heat then naturally splits into two
terms: C � Cgph 	 Ccp (see accompanying paper [17] for
further details). The former,

Cgph � kB
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is the contribution that can be ascribed to the (undamped)
gapped phasons [20]. Here !2

2�k� � �2 	 v2k2, �2 �
d2=m, x0�T� � �h�=�kBT� and, assuming that �� vkm,
� ’ �hvkm=kB. The latter contribution,
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is due to damped phasons (central peak). Here !2
cp�k� �

v2k2=��2��=m�. The low-T asymptotic of this latter con-
tribution is given by Eq. (5) by replacing �� ! ���

2.
We are now in a position to estimate the phason con-

tribution to the low-temperature specific heat in the IC
phases of biphenyl and BCPS, and in the charge-density-
wave system blue bronze K0:30MoO3:

(i) Biphenyl. In accordance with NMR [7] and
inelastic neutron scattering data [9], the scheme of no
phason gap seems to be valid here (the corresponding gap
should be & 10 MHz at least). From neutron scattering,
the phason damping can be inferred such that ��
50 GHz. Notice that such a damping, obtained at T �
3 K, is 12 orders of magnitude stronger than the one
expected for a perfect crystal [6]. So defects must be
the cause of the real damping, although inducing no
(observable) phason gap. Both phason and sound veloc-
ities can be estimated as �105 cm s�1 [3,9,21]. Therefore,
the linear-in-T contribution due to phasons will prevail
over the Debye one at temperatures & 1K. In addi-
tion, according to Eq. (5), it is obtained C=T �
10–102 erg cm�3 K�2 for these low temperatures. The
experimental value �0:5 erg cm�3 K�2 [3] is smaller in
this case, what shall be commented below.

(ii) BCPS (dynamic phason gap). From NMR and
inelastic neutron scattering experiments [8,10,11], the
corresponding damping can be inferred such that ���2 �

10 GHz. Notice that no temperature dependence is ob-
served in this damping down to T � 19 K, so it seems
very probable that it remains unaltered down to very low
temperatures (as in biphenyl). According to Refs. [2,21],
both phason and sound velocities are also �105 cm s�1.
Then, the linear-in-T contribution due to damped pha-
sons is expected to be the leading one at temperatures &

1K. It would be such that C=T � 10–102 erg cm�3 K�2,
which agrees in order of magnitude with what was ob-
served experimentally [2]. In this case (dynamic phason
gap), in addition to this linear-in-T contribution there is a
contribution due to undamped gapped phasons [Eq. (7)].
The phason gap can be estimated as �� 100 GHz [10], so
the maximum in C=T3 observed at �1–2K can then be
explained as a result of this latter contribution [20]. This
has already noticed in Ref. [2].

(iii) Blue bronze K0:30MoO3. Here, as well as in
other charge-density-wave systems (see, e.g.,
Ref. [22] and the references therein), the scheme of
a static phason gap seems to be the most appropriate
one. In accordance with inelastic scattering data [23]
this gap is �200 GHz, and the phason damping can be
estimated as �� 800 GHz. Both phason [24] and sound
[1,4] velocities can be inferred as �3 � 105 cm s�1.
Consequently, a linear-in-T contribution with C=T �
10–102 erg cm�3 K�2 is expected due to the damping of
the phasons (prevailing over the Debye one at tempera-
tures & 1 K) and, in addition, a maximum inC=T3 at T ’
10 K due to the phason gap. This qualitatively describes
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the experimental observations [1,4]. We mention that in
Ref. [25] the explanation that the maximum in C=T3 can
be ascribed to gapped phasons is questioned: it is shown
that a similar maximum arises due to the acoustic an-
isotropy of this system. In Ref. [26] it is pointed out that,
however, acoustic anisotropy cannot explain why this
maximum is so sensitive to the crystal quality. It is also
worth mentioning that, given the relatively large anisot-
ropy in the phason velocity [24], phasons can behave as
overdamped oscillations along certain directions.
Bearing in mind that an overdamped phason branch in
the one-dimensional case gives rise to a contribution
�T1=2 in the low-temperature specific heat [13]; this
could explain the deviation of the linear-in-T behavior
observed experimentally in Ref. [4] at the lowest
temperatures.

It is worth mentioning that, at present, the above con-
tributions to the low-temperature specific heat due to the
damping of the phason can only be estimated in order of
magnitude. It is true that the corresponding phason dy-
namics has been extensively studied in a number of
papers. However, the quantitative comparison of our re-
sults with the experimental data would require, in par-
ticular, the knowledge of the phason damping for the
whole phason branch. Unfortunately, these latter data
are not reported in the literature and consequently,
when carrying out the comparison of our results with
experimental data, we are forced to make some assump-
tions—for instance that the phason damping is the same
for the whole phason branch. These types of assumptions,
at the present unavoidable, could be the reason for the
overestimation of the linear-in-T contribution due the
phason damping when compared with experimental ob-
servations. More precise estimates require more complete
experimental data (see Ref. [14] for a detailed discussion).
Nevertheless, the agreement in order of magnitude we
have obtained indicates that the deviations from the
Debye law observed in the very low-temperature specific
heat of IC phases are, most probably, in regard to the
phason damping. We mention also that the resulting
linear-in-T behavior is expected as a low-temperature
asymptotic limit. It is well possible in the above men-
tioned experiments that this limit has not been fully
achieved but rather are in an intermediate (crossover)
region, which could be the reason for the different power
laws observed there.

In summary, we have shown that the glasslike anomaly
observed in the low-temperature specific heat of incom-
mensurate phases can be explained as a result of the
phason damping. Three possible scenarios for the phason
dynamic, reproducing the corresponding NMR and in-
elastic scattering data for biphenyl, BCPS, and blue
bronze K0:30MoO3, are discussed. Estimates of the
corresponding low-temperature specific heat are in rea-
sonable agreement with those observed experimentally.
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