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We present a detailed study of the lattice dynamics and electron-phonon coupling for a (3,3) carbon
nanotube which belongs to the class of small diameter based nanotubes which have recently been
claimed to be superconducting. We treat the electronic and phononic degrees of freedom completely by
modern ab initio methods without involving approximations beyond the local density approximation.
Using density functional perturbation theory we find a mean-field Peierls transition temperature of
� 240 K which is an order of magnitude larger than the calculated superconducting transition
temperature. Thus in (3,3) tubes the Peierls transition might compete with superconductivity. The
Peierls instability is related to the special 2kF nesting feature of the Fermi surface. Because of the
special topology of the (n; n) tubes we also find a phonon softening at the � point.
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During the past ten years carbon nanotubes have
gained a lot of attention [1]. This is due to their potential
for applications (e.g., for molecular electronics) as well as
to the fact that they allow the study of electronic systems
in one dimension. Thus, they offer the opportunity to
investigate effects like Peierls transition, superconductiv-
ity, electron-phonon interaction, and the interplay be-
tween them in a low-dimensional system. Despite the
great interest in these materials, progress has been hin-
dered until recently due to the difficulty of producing
carbon nanotubes with well-defined radii as well as due
to the difficulty to determine in detail the structure of
nanotubes present in a given sample. Recently, however,
very promising progress in identifying the structure of
nanotubes has been made by combining Raman and pho-
toluminescence measurements [2]. Size selection has
been also achieved in certain cases. For example, growing
nanotubes in zeolite crystals has made it possible to
produce tubes with a very narrow radii distribution [3]
thus allowing for a detailed comparison with modern
density functional theory (DFT) based calculations [4–
6]. Recently, superconductivity has been reported for
nanotubes with radii of 4 �A [7]. This immediately raises
the question as to the origin of superconductivity, the
importance of Peierls distortions, and of electron-
electron correlations. Dealing with electron-lattice and
strong electron-electron interaction in a materials spe-
cific way from ab initio methods has not been possible so
far even for much simpler systems than nanotubes. Thus,
in the past either one had to restrict oneself to model
studies of the electron-electron aspect [8] or study the
electron-lattice interaction with correlations taken into
account only on the level of local density approximation
(LDA) based functionals [9,10].

In the latter case, however, modern DFT-based meth-
ods allow for the parameter free microscopic calculation
of phonon modes. So far, for nanotubes this scheme has
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been used nearly exclusively for the determination of
Raman active modes. The results are generally in good
agreement with available Raman data, thus emphasizing
the reliability of this approach. Calculation of the full
phonon dispersion for a given nanotube is a much more
elaborate task. Based on supercell calculations the phonon
dispersion for a small number of tubes could be deter-
mined recently [6,10]. This approach, however, has a
certain disadvantage if one is interested in phonon
anomalies and electron-phonon coupling. Anomalies
show up in most cases at phonon wave vectors which
are not commensurable with the underlying lattice, thus
even for approximate treatments, huge supercells would
be needed to study, for example, a Peierls transition by
this method. Only in very favorable cases, these anoma-
lies appear at high-symmetry points and can be dealt
with accurately by the supercell approach (as, e. g., for
graphite [10,11]). Also the calculation of superconducting
properties in the framework of the Eliashberg theory
requires a detailed knowledge of the phonon dispersion
over the whole Brillouin zone (BZ). Especially systems
which show phonon anomalies require usually a very
dense mesh of phonon wave vectors which can not be
obtained with supercell methods. The calculations get
even more demanding if the phonon anomalies are related
to special nesting features of the Fermi surface. Since in
one-dimensional systems the Fermi surface consists only
of isolated points, the most extreme case for nesting
properties is reached here. This requires also a very dense
k-point mesh for calculating the electronic band structure
and wave functions. Already, for simple systems like
graphene and graphite, this effect can be seen easily. It
is reflected in the high sensitivity of certain phonon
modes at the K point to sampling effects of the Fermi
surface as reported recently [10,11].

An alternative method is offered by using density func-
tional perturbation theory (DFPT) which allows for the
-1  2004 The American Physical Society
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FIG. 1. Calculated band structure of the (3,3) nanotube.
Compared are results obtained (a) from the calculated graphene
band structure using the folding method, and (b) for the true
nanotube geometry.
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calculation of phonon modes at arbitrary wave vectors
without relying on large supercells [12]. Using this ap-
proach we have studied in detail the complete lattice
dynamics and electron-phonon interaction for a (3,3)
nanotube. This belongs to the class of small-radii tubes
which have been reported to be superconducting. Our
Letter will try to answer the question whether or not
electron-phonon coupling can explain superconductivity
in this tube. A special complication arises from the Peierls
instability which has to show up in all one-dimensional
metallic systems. However, this has not received much
attention in the past since general belief was that the
mean-field Peierls transition temperature for nanotubes
is always very low so that it is of no practical conse-
quence. These arguments are based on information from
graphite using the folding concept [1]. However, this
approach breaks down for tubes with small diameter
which is seen, e.g., in the prediction of the wrong ground
state for small-radii nanotubes [4,13]. Recently an ap-
proximate treatment of the lattice dynamics for (5,0),
(6,0), and (5,5) tubes has been presented which showed
for (5,0) tube, indeed, that the estimated transition tem-
perature is of the order of 160 K and thus not negligible
[14]. However this approach was based on a nonselfcon-
sistent tight-binding scheme and did use only an approxi-
mate treatment of the polarization eigenvectors; thus
results might be questioned.

In contrast, our DFT-based method allows for a con-
sistent calculation of electronic states, phonon modes and
electron-phonon coupling without introducing approxi-
mations beyond the LDA level. In this Letter we present
fully ab initio results for phonon dispersion and eigenvec-
tors as well as for the electron-phonon coupling for the
(3,3) nanotubes using a well-tested norm-conserving
pseudopotential of Hamann-Schlüter-Chiang type [15].
We use DFPT in the mixed-basis pseudopotential formal-
ism [16] which has been successfully applied to study
electron-phonon-mediated superconductivity [17,18]. As
basis functions localized 2s and 2p functions are used
together with plane waves up to an energy cutoff of 20 Ry.
For integration over the BZ, a Gaussian broadening
scheme is employed. As test of the reliability of our
phonon approach we have calculated the phonon disper-
sion for graphene. Comparison with results published
recently show excellent agreement among the different
calculations except for the highest mode at the K point
which is very sensitive to k-point mesh and broadening as
already mentioned [10,11].With a very dense k-point mesh
of 5184 points in the BZ we found still a fluctuation of
1.5 meV for the highest mode when going from a broad-
ening of 0.05 to 0.2 eV. The authors of Ref. [10] tried to
avoid the complications due to very dense k-point sam-
pling by increasing the broadening; however, for studying
instabilities due to Fermi surface nesting that is not a
practical way since any instability will be broadened
substantially. Thus, one of the complication for the cal-
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culations for the nanotube is the requirement of a very
dense k-point mesh and a small broadening.

Our calculations for the (3,3) nanotubes were done in a
supercell geometry so that all tubes are aligned on a
hexagonal array with a closest distance between adjacent
tubes of 10 �A. The tube-tube interactions are very small
[4]. We used 129 k points in the irreducible part of the BZ
and a broadening of 0.2 eV. The structure was fully
relaxed and the optimal geometry agreed very well with
those given in Refs. [4,5]. The phonon calculation was
carried out with the DFPT method. For calculation of the
electron-phonon matrix elements we even used up to
1025 k points. In Fig. 1 we have plotted the band structure
close to the Fermi energy and for comparison also the
band structure as obtained by using the folding method.
Our results agree well with those obtained previously
[4,5]. At k � kF � 0:284 (in units of 2
=a, where a is
the lattice constant of the graphene honeycomb lattice)
we see that two bands are crossing �F. This special
feature which holds for all (n; n) tubes is important for
phonon anomalies seen at the � point, as will be empha-
sized later. The dispersion differs most notably from those
obtained by using the folding technique by a shift of the
kF value and a change in slope of the two bands crossing
at �F. This has of course drastic consequences for the
phonon modes.

Phonon results are shown in Fig. 2. Again we have
plotted folding results together with the ab initio disper-
sion curves. These ab initio results were obtained by
-2
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Fourier interpolation on a 16-point grid. The electronic
wave functions were obtained from a calculation with a
broadening width of 0.2 eV. In general, the ab initio
phonon frequencies are softer than the folding results.
Furthermore, near q � 2kF one sees phonon anomalies in
certain phonon branches as well as a certain softening at
the � point which is not present in the dispersion obtained
by folding. The �-point softening has been seen and
studied already for the G band in Refs. [9,10]. However,
this effect is also present in another mode at � 90 meV
with the same symmetry. It is related to the fact that these
�-point phonons couple the two electronic bands crossing
right at kF (Fig. 1), leading to a nesting vector q � 0.
Therefore, this softening also indicates an underlying
Peierls instability; however, the corresponding Peierls
distortion does not change the lattice periodicity. Note
that in our DFPT approach, the calculations of phonons
include all screening effects due to lattice distortions in
contrast to other treatments like, e.g., tight-binding meth-
ods (see Ref. [14]).

To study the anomalies near q � 0 and q � 2kF in
more detail we have increased the number of k points
and reduced the broadening from 0.2 to 0.025 eV. This can
be interpreted as a variation of the electronic temperature
from 1096 to 137 K. With finer sampling and reduced
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FIG. 2 (color online). Calculated phonon dispersion curves of
the (3,3) nanotube as obtained (a) by the folding method from
the graphene phonon dispersions and (b) for the true nanotube
geometry. The latter corresponds to a high effective tempera-
ture of 1096 K. The arrow indicates 2kF (folded back to the first
Brillouin zone).
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temperature one of the modes with the anomalous behav-
ior at q � 2kF gets unstable. Results for Tel � 137 K are
shown in Fig. 3. Here only those modes which are sensi-
tive to the temperature variation are shown. The modes
which show anomalous behavior at the � point stay stable
for all temperatures studied but should eventually go soft
at low enough temperatures. The Peierls transition tem-
perature TP is defined by !2kF �TP� � 0. This leads im-
mediately to a lower limit of 137 K for TP which is of
similar magnitude as the value given for a (5,0) tube in
Ref. [14]. It is important to note that, contrary to early
estimates of TP for nanotubes of the order of 1 K [19], this
temperature is of sizeable magnitude and, thus, the Peierls
instability might compete with the superconducting
transition.

To investigate the possibility of phonon-induced
superconductivity, we have calculated the microscopic
electron-phonon coupling parameters, which are central
to the Eliashberg theory of strong-coupling superconduc-
tivity. The coupling constant for a phonon mode q� is
given by

�q� �
2

�hN��F�!q�

X
k��0

jgq�
k�q�0;k�j

2���k�����k�q�0 �; (1)

where N��F� is the density of states at the Fermi energy
and all energies are measured with respect to �F. The
electron-phonon coupling matrix element is given by a

gq�
k�q�0;k� / h�k�q�0 j�Vq�

eff j �k�i;

with �Vq�
eff being the change of the effective crystal

potential due to a phonon q� and j �k�> being the
electronic wave functions . Since this quantity is very
sensitive to k-point sampling we have used a grid of 1025
points. Because of the self-consistent determination of
�V, the matrix elements include all screening effects in
contrast to tight-binding approaches. Because the Fermi
surface consists only of the points k � �kF, contri-
butions to the total electron-phonon coupling constant
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FIG. 3 (color online). Phonon dispersion curves for the two
symmetry classes which are affected by electron-phonon cou-
pling. Shown are results obtained on a fine q grid and for a
small effective temperature of 137 K.
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� � 1=Nq
P

q��q� are restricted to q � 0 and q � 2kF.
Roughly 20% comes from q � 0 while 80% is contributed
from 2kF. An estimate for Tc can be obtained by using the
Allen-Dynes formula [20]. Neglecting the effect of the
electron-electron interaction on the pairing, it gives an
upper limit of Tc � 0:833 !ln expf1:04�1� 1=��g,
where the effective phonon frequency is defined as

!ln � exp
�
1

�
1

Nq

X
q�

�q� ln�!q��

�
:

Using our results for Tel � 1096 K gives � � 0:25 and
!ln � 60:4 meV and as an upper limit Tc � 3 K. One
has, however, to consider the possibility that the presence
of the Peierls instability significantly alters this estimate.
This is because in the expression (1) for the coupling
constant �q� the renormalized phonon frequencies enter.
The softening of the critical mode thus produces a strong
temperature dependence of �, which formally diverges at
TP. At the same time !ln goes to zero. Simulation of this
mode softening effect using the Allen-Dynes formula
shows that Tc can be enhanced due to the softmode, but
the obtained maximal value of � 30 K is still signifi-
cantly smaller that TP. Taking into account a finite
electron-electron interaction further reduces this value.

To get a more precise estimate of the Peierls transition
temperature we have made connection with simple model
studies which have been carried out in the past consider-
ing a Fröhlich Hamiltonian in random-phase approxima-
tion [21]. Extending this approach to the present 2-band
case gives for the critical mode at q � 2kF a temperature
dependence of the frequency as

f �h!q�2kF �T�g
2 � A ln�T=TP�;

where

A � 2 �h!bare
X
�

�g��
2N���F�:

Here, N���F� is the partial density of states per spin of
band �, !bare is the unrenormalized phonon frequency,
and g� is the electron-phonon matrix element for scatter-
ing processes from kF to kF within the �th band induced
by the critical phonon at q � 2kF. Because of symmetry,
only intraband scattering processes contribute. Estimates
of the parameters from our ab initio calculations for
different effective temperatures lead to TP � 240 K and
A � �39 meV�2. Note that the expression for A does not
depend on the phonon frequency but only on the phonon
eigenvector due to the fact that �g��

2 � 1=!bare. Our
finding that TP is an order of magnitude larger than Tc
suggests that for the (3,3) nanotube the Peierls instability
dominates over the superconducting one.

In summary we have presented here a fully ab initio
calculation of the lattice dynamics and the electron-
phonon coupling for the (3,3) carbon nanotube. Without
relying on simplifying approximations the Peierls tran-
sition could be seen and a Peierls mean-field transition
temperature TP � 240 K was predicted. Calculating the
245501
electron-phonon coupling using the same scheme resulted
in a superconducting transition temperature which was
1 order of magnitude smaller than TP. This makes it not
very likely that superconductivity based on the electron-
phonon mechanism is present in (3,3) nanotubes. This
does, however, not exclude the possibility that phonon-
mediated superconductivity exists in the case of the (5,0)
nanotube, which is another member of the class of 4 �A
tubes for which superconductivity has been observed
experimentally [7]. Effects which have been discussed
here are not accessible with the folding method since they
depend sensitively on the curvature of the nanotubes, the
detailed band structure and nesting features. Since in our
approach arbitrary q points are treated on the same foot-
ing we could easily see that the q � 0 anomaly is only a
special case of strong electron-phonon coupling. In con-
trast to former studies we could show that this effect is not
restricted to the G band but should be seen in another
mode, too, belonging to the same symmetry class.
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