
PRL 93, 244301 (2004) P H Y S I C A L R E V I E W L E T T E R S week ending
10 DECEMBER 2004
Crumpling of a Stiff Tethered Membrane
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3Laboratory of Computational Engineering, Helsinki University of Technology, P.O. Box 9203, FIN-02015 HUT, Finland
(Received 22 September 2003; published 8 December 2004)
0031-9007=
A first-principles numerical model for crumpling of a stiff tethered membrane is introduced. This model
displays wrinkles, ridge formation, ridge collapse, and initiation of stiffness divergence. The amplitude
and wavelength of the wrinkles and the scaling exponent of the stiffness divergence are consistent with
both theory and experiment. Close to the stiffness divergence further buckling is hindered by the nonzero
thickness of the membrane, and its elastic behavior becomes similar to that of dry granular media. No
change in the distribution of contact forces can be observed at the crossover, implying that the network of
ridges is then simultaneously a granular force-chain network.

DOI: 10.1103/PhysRevLett.93.244301 PACS numbers: 46.25.–y, 05.70.Np, 68.60.Bs, 82.20.Wt
Crumpling of, e.g., sheets of paper, is an everyday phe-
nomenon that one easily passes without much extra atten-
tion. In physics, however, crumpling has become a chal-
lenging topic of research. In addition to basic statistical
mechanics properties [1], issues such as scaling of strength
and energy [2,3], geometry and singularities [4,5], acoustic
emission [6], and related phenomena in soft-matter sys-
tems [7] have become topics of interest. In this Letter, we
present a first-principles numerical model for crumpling of
a stiff tethered membrane, and relate the problem to the
formation of force-chain networks in granular media [8,9].

Crumpling of a thin elastic sheet or a stiff membrane
demands deformation energy. At very small strains, a
membrane is uniformly compressed. Thin structures are,
however, prone to buckling. At first, buckling appears as
wrinkles or elliptical ridges. The wavelength and ampli-
tude of the wrinkles depend on loading and on the dimen-
sions of the membrane [10]. At constant strain the
wavelength and amplitude of the ripples grow according
to a unique scaling law [11,12]. As crumpling proceeds, the
deformation energy begins to concentrate in narrow ridges
and conical peaks [2,4], and eventually the strain there
becomes so large that irreversible plastic yielding takes
place. If the sheet is stretched out again, the ridge pattern
can clearly be observed.

Another characteristic feature of the process is that the
effective stiffness of the membrane increases fast with
increasing degree of crumpling. The ultimate limit of
crumpling would be to press the membrane into a volume
equal to that of its own. In practice this limit cannot be
reached. A ball that results from squeezing a piece of paper
very hard contains about 75% air [13]. The effective stiff-
ness of a membrane under crumpling has been found by
careful experiments to display a power-law divergence in
the dense-packing limit [13]. This divergence has been
suggested to arise from the total ridge length diverging in
this limit in a scale-invariant way.

In order to study wrinkles, ridge formation, and the
effective stiffness in crumpled membranes, we constructed
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a numerical model for stiff tethered membranes. Our teth-
ered membrane consisted of frictionless spheres with stiff-
ness Ys arranged in a triangular lattice. Each sphere had
mass m and moment of inertia I, and was connected to its
neighbors by massless elastic beams with both bending and
tensile stiffness. We used a higher Young’s modulus for the
spheres (Ys) than for the beams (Yb). In the simulations
reported here, we chose Ys � 107 for spheres of radius
0.57. The beams had Young’s modulus Yb � 5� 103,
length 1=

���
3

p
, and a square cross section of size 0:62. This

implies a tensile modulus of 3:1� 103 and a bending
modulus of 3:7� 102. The membrane had a thickness of
�0:6 and was placed horizontally (in the xy plane) in the
middle of a rigid cube of time dependent size X3�t�. Small
random fluctuations in the z components of the spheres
were introduced to avoid perfect symmetry, and the mem-
brane was slightly broader in the y direction to allow initial
wrinkles to form. Newtonian dynamics was applied.

The environment inside the box was strongly dissipative
(as, e.g., a viscous fluid) such that a velocity dependent
force d � _~x opposed the motion of spheres. The membrane
dimensions were large enough for temperature fluctuations
to be negligible. For computational reasons we did not
include more than about 105 degrees of freedom in the
system. Wrinkles and the onset of ridge formation were
nevertheless observed, as well as the beginning of a power-
law divergence of the effective stiffness with an exponent
close to the experimental one. At low porosities the effec-
tive stiffness of the crumpled system deviates from the
power law and behaves like that for a packing of solid
spheres [14]. By separating the elastic-energy components
in this limit, we found that the total ridge length indeed
tended to diverge with zero critical porosity. The nonzero
thickness of the membrane (�0:6) hindered the actual
divergence, and a crossover to a different behavior took
place in agreement with experiments.

Figure 1 shows a snapshot from a simulation that dis-
plays a few wrinkles at t � 200. Minimization of the
elastic energy leads to an amplitude �A� to wavelength
1-1  2004 The American Physical Society
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FIG. 1. Snapshots of a crumpling membrane: top views
(above) and side views (below) for 3 times t. At t � 200
wrinkles are observed. At t � 500 ridges have begun to collapse.
At t � 700 the membrane is entering the stiffness scaling
regime, �X
 Xc�=Xc 	 1:6.
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FIG. 2. (a) The ratio of amplitude to wavelength of the wrin-
kles A=� as a function of membrane compression 	 � 0:02t.
The simulation result is compared to the predicted A=� /

����
	

p

[10]. (b) � as a function of dissipation constant d. The simulation
result is compared to the predicted � / d
1=4 [10]. (c) The time
evolution of A at constant strain. The simulation result is
compared to the predicted A / t0:28 [11,12]. (d) The time evo-
lution of � at constant strain. The simulation result is compared
to the predicted 1=� / t
0:28 [11,12]. All predicted results are
shown with a broken line. Figures 2(c) and 2(d) result from
different simulations and the indicated times t are not compa-
rable. The scaling regimes of A and � appear simultaneously.

(a) (b) (c)

FIG. 3. Contour maps (at t � 400) of the spatial locations of
(a) the highest local bendings p� ~x; t�< 0:6, of (b) the highest
elastic energies of the beams Eb� ~x; t�, and of (c) the highest
contact elastic energies of the spheres Es� ~x; t�.
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��� ratio for the wrinkles, A=�� �	=W�1=2, with W the
width and 	 the compression of the membrane perpen-
dicular to the wrinkles [10]. This result is tested in Fig. 2(a)
for our model membrane. The A=� / 	1=2 behavior holds
up to 	 	 6 (here W 	 23:4). In Fig. 2(b) the scaling of �
as a function of dissipation coefficient d is compared to a
theoretical prediction: d corresponds to the ‘‘effective
elastic foundation stiffness’’ of Ref. [10]. (The � of the
wrinkles is determined by competition of bending stiffness
and out-of-plane motion [10], and now the only force
opposing this motion is damping.) For benchmarking, the
time evolution of A is compared to the predicted scaling
law, A� t0:28 [11,12], in Fig. 2(c). In order to investigate �,
a long and narrow membrane was slowly compressed to a
small strain that was then fixed. The time evolution there-
after of � is shown in Fig. 2(d) together with the t0:28

scaling.
Deformation of ridges in controlled geometries has been

investigated both numerically and theoretically [2,3,5,15–
20]. The elastic deformation energy of a ridge of length L
scales as ��L=��1=3, where � is the thickness of the sheet
and � its bending modulus. Using this result, and following
the derivation in Ref. [13], the scaling of membrane stiff-
ness can be estimated. A crumpled sheet is divided into
facets by the ridges. Ridges surrounding a facet of size L2

have a length proportional to L, while it fills a space of size
L3. This leads to a bulk stiffness divergence, K �


VdP=dV / V
11=3, when the volume of confinement V
decreases under pressure P. This is not quite consistent
with experimental findings. In Ref. [13], K was reported to
scale as K / �Vc 
 V�
� with � 	 2:85. Notice that this
scaling relation can also be expressed as F / ��c 

��
��1 and F / �X
 Xc�


��1, where F is the external
force, � the solid-volume fraction, and X�t� the time
dependent linear dimension of the membrane.
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To investigate ridge formation in the simulations, we
compared local bending to local energy. We used the sum
of dot products of the nearest-neighbor bonds in the three
principal directions of triangular lattice as a measure for
local bending of the membrane,

p� ~x; t� �
1

3

X3
i�1

~lni �t� � ~l
m
i �t�

lni l
m
i

: (1)

This was compared to the local elastic energies of the
beams,

Eb� ~x; t� �
X6
i�1

Z t

0
F�Yb; ~x�t��d~x�t�: (2)

In Eq. (1), lm and ln are beam lengths on opposite sides of a
lattice site. In Eq. (2), the elastic force F�Yb; ~x�t� is inte-
1-2
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FIG. 4. (a) The total force F on the box around the membrane
scaled by Ys and linear membrane size W as a function of
�X
 Xc�=Xc. Data are shown for W � 40, 80. The solid line
shows the experimental [13] power-law F�X� � �X
 Xc�


1:85.
(b) F=�WYs� as a function of solid-volume fraction �. The
scaling of membrane stiffness, �0:76
��
1:85, and of granular
stiffness, ��
 0:67�1:62, are compared to the simulation results.
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FIG. 5. (a) Es as a function of �. The broken line is Es / ��

0:67�2:62. (b) Eb as a function of �. The broken line is Eb / �1

��
5=3.
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grated over the related displacement, and the sum is over
the six local degrees of freedom.

The elastic deformation energy of spheres in contact
can also be used to identify ridges. This energy can be
written as

Es� ~x; t� �
Xn
i�1

1

2
Ys�

2
s ; (3)

with �s the virtual ‘‘overlap’’ of spheres in contact. The
sum is taken over all contacts.

Figure 3 shows contour plots of the lowest values of
p� ~x; t� and the highest values of Eb� ~x; t� and Es� ~x; t� at an
early stage of the crumpling process (t � 400). It is ob-
vious that Eb and Es reach their highest values at locations
of high local bending, and elongated structures, i.e., ridges,
can clearly be seen. As crumpling proceeds, ridges grow
and collapse, and the membrane folds. At later stages of
crumpling it is not easy to detect ridges as the membrane
profile becomes very complex.

The effective bulk stiffness of a membrane can be ana-
lyzed, e.g., by its stress-strain curve. The latter is the total
force F on the confining box divided by the linear size of
the membrane (F=W) as a function of X�t�. F�t�=W in-
creases fairly linearly before the membrane begins to
buckle and fold. As the dense-packing limit is approached,
F=W increases rapidly, until finally a saturation regime is
entered.

Notice that there are three types of dense-packing limits:
(1) For the tightest packing, the volume of the confining
box equals that of the membrane, and the solid-volume
fraction is �1 � 1:0. (2) For hard-core spheres, the tightest
packing is an fcc lattice with �2 � #

���
2

p
=6 	 0:74. (3) For

a random dense-packing of spheres, �3 	 0:63. For our
model membrane, stiffness divergence takes place at �c 	
0:75, which is close to �2. This value was achieved for
initial configurations close to that of a triangular lattice.
Apart from very late phases of crumpling, the system may
have some fcc type order, which explains the fairly high
value of �c. (See also below.) Crossover to saturation
behavior occurs, however, well before this �c is reached.

Figure 4(a) shows F=�WYs� for membranes with 104 and
4� 104 degrees of freedom (simulations require about
106 
 107 time steps). Simulation results are compared
to the experimental result by Matan et al. [13], F�X� /
�X
 Xc�


��1, with � 	 2:85. Good agreement is found
until saturation sets in at �X
 Xc�=Xc 	 0:03. The critical
values Xc were chosen so as to give the straightest lines in
Fig. 4(a), and correspond to � 	 0:78 and � 	 0:75 for
W � 40 and W � 80, respectively.

After saturation, stiffness behavior becomes different as
beams no longer affect membrane stiffness. Instead, the
membrane begins to resemble a granular packing. The
stiffness of a 3D packing of solid spherical grains scales
[14] like ��
�c�

$, with $ 	 1:62 and a critical volume
close to �3, �c 	 0:63, depending somewhat on the inter-
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action between grains. Figure 4(b) shows a comparison
between simulations and the scaling of F��� in these two
regimes. The fairly high �c 	 0:67 is expected to result
from deformation of spheres, which becomes non-
negligible for high values of � (hard-core spheres would
be unstable numerically).

By following the energy of the membrane from the
initially flat to a fully crumpled state, it is possible to
determine the energy component responsible for the stiff-
ness divergence seen in Fig. 4. The external energyR
t F�t�dX�t� was also compared to the internal energy of

the membrane, and the two were found to be equal, con-
sistent with conservation of energy.

The internal energy can be split into five terms that are
related to the force terms in the general equation of motion,

m�~x� d _~x�K ~x� Ys ~�s � ~fext: (4)

Here, x is the displacement, m the mass, d the damping
coefficient, K the stiffness matrix, ~�s the deformations
(virtual overlap) of spheres in contact, and ~fext are forces
applied on the walls of the confining box. The related
energy terms are the following: (1) The elastic energy of
the beams, Eb. (2) The compression energy at the contacts
between spheres, Es. (3) The compression energy of the
spheres against external walls, Eext � 0:5

P
Yw�2

w. (4) The
energy dissipated through damping, Ed �

R
t
~Fdd ~x. (5)

The kinetic energy of the spheres, Em � 0:5
P
m _~x2. The
1-3
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FIG. 6. (a) Distribution functions for the deformation energies
at contacts between spheres for � � 0:04; 0:37; 0:57; 0:76. The
data are compared to the equilibrium distribution exp�
Es� [21].
(b) Es as a function of �. No crossover at � 	 0:72 is visible.
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dominating terms in the scaling regime are Es and Eext.
The divergence of Eext is rather trivial as it is just the
deformation energy of the confining box. It is thus Es
that dominates the stiffness divergence. This explains to
some extent why there is crossover to granular packings.
When the deformation energy at the contacts between
spheres dominates over the other energy terms, the beams
no longer play a role in membrane stiffness.

If the membrane had no thickness, its folding would
continue without limit. Then, according to the scaling
arguments above, the energy related to deformation of
beams would behave as Eb / ���5=3 at small �. In analogy
with Ref. [13], at high compression 1=� ! �1=�


1=�c�. Setting �c � 1, we obtain Eb / ��1
��=�
5=3.
The two energy terms Es and Eb, and their scaling behav-
iors, are compared in Fig. 5. (Notice that deformations of
both beams and spheres are included in Fig. 4(b).)

Since there are two qualitatively different scaling be-
haviors of stiffness, one would expect a qualitative change
at the crossover in the distribution of elastic energy or
contact forces between spheres. We could not, however,
detect any such change as demonstrated by the distribu-
tions shown in Fig. 6 for the deformation energies at the
contacts. There was no change either at the crossover in the
(changing) set of spheres that experienced the highest
contact forces. This behavior strongly suggests that, at
the crossover, ridges form the force chains of the
granular-packing regime [8,9]. Notice that both are com-
plicated 3D networks of essentially 1D lines of localized
deformation energy. It is tempting to conclude that they are
not separate phenomena, but different manifestations of a
single phenomenon. The crossover would then be related
to membrane thickness beginning to limit the density of
network lines.

In conclusion, we have demonstrated that a numerical
model of a tethered membrane can reproduce the theoreti-
cally predicted wrinkle and ridge formation and the ex-
perimentally observed stiffness divergence. The early-
stage ridges can be traced by the elastic deformations of
beams and the contact deformations of spheres. The diver-
gence of the effective stiffness is initially dominated by
24430
bending and stretching of beams, and finally by the contact
energy of spheres. When the solid-volume fraction is far
below that of dense granular packings, the scaling of stiff-
ness is ‘‘membranic,’’ and when dense-packing is ap-
proached, it becomes ‘‘granular.’’ There is no detectable
change in the distribution of deformation energy when
ridges turn into force chains.
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