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It was recently conjectured that 1/f noise is a fundamental characteristic of spectral fluctuations in
chaotic quantum systems. This conjecture is based on the power spectrum behavior of the excitation
energy fluctuations, which is different for chaotic and integrable systems. Using random matrix theory,
we derive theoretical expressions that explain without free parameters the universal behavior of the
excitation energy fluctuations power spectrum. The theory gives excellent agreement with numerical
calculations and reproduces to a good approximation the 1/f (1/f2) power law characteristic of chaotic
(integrable) systems. Moreover, the theoretical results are valid for semiclassical systems as well.
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Quantum chaos has not a precise definition as yet. It is
often defined as the study of the quantum properties of
systems with a chaotic classical analog. This point of
view has made it possible to establish a clear relationship
between the energy level fluctuation properties of a quan-
tum system and the large time scale behavior of its
classical analog [1]. The pioneering work of Berry and
Tabor showed that the spectral fluctuations of a quantum
system whose classical analog is fully integrable are well
described by Poisson statistics [2]. On the other hand,
Bohigas et al. conjectured that the fluctuation properties
of quantum systems which in the classical limit are fully
chaotic coincide with those of random matrix theory
(RMT) [3]. Recently, a different approach to quantum
chaos has been proposed [4]. Considering the sequence
of energy levels as a discrete time series, it was conjec-
tured that chaotic quantum systems are characterized by
1/f noise, whereas integrable ones exhibit 1/f> noise.
This conjecture is supported by numerical calculations
which involve atomic nuclei and the paradigmatic classi-
cal random matrix ensembles (RME) [4]. Although 1/f
noise is a ubiquitous feature of many complex systems, its
origin is still an unsolved problem. However, the origin of
the 1/f noise in the spectral fluctuations of chaotic quan-
tum systems might be easier to understand because of the
mathematical tractability of RMT.

In this Letter we present a theoretical derivation of 1/ f
and 1/f? noises in chaotic and regular systems, respec-
tively. We use RMT to derive these results, but they are
also valid for semiclassical systems. We present the main
steps of the derivation and compare the theoretical results
with numerical calculations for RME, an atomic nucleus,
and a quantum billiard, finding excellent agreement.

For any quantum system, the accumulated level density
N(E) can be separated into a smooth part N(E) and a
fluctuating part N(E). If we remove the main trend de-
fined by the former, we can compare the statistical prop-
erties of different systems or different parts of the same
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spectrum. This can be done by means of a transformation,
called unfolding, which consists in mapping the energy
levels E; onto new dimensionless levels €; = N(E;).

The analogy between the energy spectrum and a dis-
crete time series is established in terms of the §,, statistic,
defined as

q
0, = Z(Si —(5) = €441 — € — g, (D
i=1
where ¢; is the ith unfolded level and s; = €;,; — €;. Note
that 0, represents the deviation of the excitation energy of
the (g + 1)th unfolded level from its mean value.
Moreover, it is closely related to the level density fluctua-
tions. Indeed, we can write

5(] = _N(Eq+1)r (2)

if we appropriately shift the ground state energy; thus, it
represents the accumulated level density fluctuations at
E = E, ;. Its power spectrum, defined as the square
modulus of the Fourier transform, shows neat power
laws P2 o« 1/k* both for fully chaotic and integrable
systems, but level correlations change the exponent
from a = 2 for uncorrelated spectra to a = 1 for chaotic
quantum systems [4].

Notation—We consider an interval of length L > 1
containing N = L unfolded energy levels. The fluctuating
parts of the level and accumulated level densities are
denoted p(€) and 7i(e), respectively. In addition to the
0, statistic, we also introduce another discrete function
ii, = fi(q), obtained by sampling the continuous function
for integer values of the energy. The Fourier transforms
and power spectra of these functions are defined in the
usual way [S5]. The differences between continuous and
discrete Fourier transforms play a relevant role in the
following. Our notation is summarized in Table L.

Spectral and ensemble averages will be denoted by (-)
or (-)g to distinguish ensemble averages performed in

© 2004 The American Physical Society



PRL 93, 244101 (2004)

PHYSICAL REVIEW

week ending

LETTERS 10 DECEMBER 2004

TABLE I. Summary of the functions, Fourier transforms,
and power spectra used in this Letter.

Domain R VA
Function ii(e) i, 3,
Fourier transform A7) Ay Oy

Power spectrum P(7) Py P

different RME. Here, B stands for the repulsion parame-
ter characterizing the ensemble. In this work we consider
two RME: the Gaussian orthogonal ensemble (GOE) and
the Gaussian unitary ensemble (GUE) [6]. We have 8 = 1
for GOE and 8 = 2 for GUE.

Spectral fluctuations.—The main object of this Letter
is to obtain explicit expressions of the average value of P,‘f
for chaotic and integrable systems. Except for integrable
systems, one of the main features of quantum spectra is
that successive level spacings are not independent, but
correlated quantities. This property makes it exceedingly
difficult to work directly with the discrete &, sequence. To
circumvent this difficulty we profit from the relationship
(2). The statistical properties of 7i(€) are usually measured
in terms of the spectral form factor, defined as

2
>, 3)

that is, as the power spectrum of the fluctuating part of
the energy level density. Instead of K(7), we can use the
power spectrum P"(7) of 7i(€) to analyze spectral fluctu-
ations. Using the so-called differentiation theorem [5], it
can be shown that for very large L values and 7, 7/ # 0
both quantities are closely related by the equations [7]

K(7) = < ‘ [de[)(e)e_i”"

[A(7)]? K(r
WOD ey = KO aw
ol (T)L”(T/» =0, 77, (4b)

valid for systems where (p(€)p(e + 7)) goes to zero
faster than 1/ as 5 — o0

The next step is to relate the spectral fluctuations of 7,
to those of the continuous function 7i(€), as given by their
power spectra. With the usual definitions for the continu-
ous and discrete Fourier transforms we have [5]

1 > k
n,=— al—+q), k=12,...N—1, (5
k \/Nq:ZOO <N fI> ( )
and therefore

0 ﬁ"(%-i— p)ﬁ(%-ﬁ- q)

PZ = Z N y
pg=—00 (6)

k=12...,N— 1.

Considering separately the cases p = ¢ and p # ¢, using
(4b) and the fact that P"(7) is symmetric in 7, one can
easily deduce the average value of P} for N > 1,

0= () 2 (a)) 2w
k=12,..,N—1L (7)

Using Eq. (4b) and taking into account that K(7) = 1 for
7 = 1, which is exactly equal for systems with GUE and
Poisson statistics, and a good approximation for systems
with GOE-like spectral fluctuations, (7) simplifies to

N2 (K& -1 K(1—-4%—1 1
Py =-—1—*X + N + :
(PP 477-2{ K2 (N — k)? } 4sin?(Z¥)
k=12..N-1 ®)

Finally, in order to obtain (P?) from Eq. (8) we use the
relationship between the variances of §, and 7i(€), which
depends strongly on the system fluctuations. For fully
chaotic systems (B>0) we have (82)— (ii(q)*) =
—1/6, ¢ >0, an expression which is essentially valid
for the three classical RME and their interpolations [8].
On the other hand, for systems with Poisson statistics
(B =0), (82) = (ii(g)*). From these simple expressions
we obtain a new relationship between the covariance
matrices of &, and 7i(q),

+85
=, p.g>0, >0,

0, B=0,

(8,8,) — (ip)ii(q)) = {
©)

where 6¢ is the Kronecker delta. Inserting this equation
into the definitions of (P?) and (P%), we get

for chaotic systems,
for integrable systems,

<P£>={<PZ>_1—12 (10)

(PR
where k=1,2,..., N—1and N > 1.

Collecting (10) and (8) one obtains an analytical ex-
pression for (P?) in terms of K(k/N), valid for fully
chaotic and integrable systems.

Quantum Chaos.—One of the most important features
of fully chaotic systems is the universal behavior of their
spectral fluctuations that are well described by RMT for
large energy windows. Exact analytical expressions are
known [6] for K(7) in all RME,

) S 1’
Ko ={7 T2 (a1
(27— 7log(l1 +27), T=1,
K(r)p1 = {2 —rlogh),  r=1 1P

Equation (10), together with (8) and (12) or (11), gives
explicit expressions of (P?) for GOE and GUE, which we
do not show for the sake of space. For generic chaotic
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systems we can apply GOE or GUE results depending on
their symmetries.

Integrable systems.—In the case of integrable systems
we have K(7) = 1 [1], instead of (11) or (12). Using again
(10) and (8), we see that (P¢) reduces to the last term of
Eq. (8).

Semiclassical systems.—On the other hand, using peri-
odic orbit theory and semiclassical mechanics, it is pos-
sible to calculate K(7) for semiclassical systems. For
integrable systems the semiclassical theory predicts
K(7) = 1, while for chaotic systems it gives K(7) =
27/ B, which coincides with the short time behavior of
Egs. (11) and (12). These expressions are valid when
Tmin <K T <K Ty, Where 7, is the period of the shortest
periodic orbit, and 7y is the Heisenberg time of the
system, related to the time a wave packet takes to explore
the complete phase space of the system [9,10]. Therefore,
the expressions derived above are generic results appli-
cable to chaotic and integrable quantum systems for 7
between these two values. Nevertheless, in semiclassical
systems (like quantum billiards) there can be some devi-
ations at the lowest frequencies due to the behavior of the
shortest periodic orbits. Generally speaking, we expect
smaller values (P?) for k = N, than those of Eq. (10).

1/f and 1/f? noises.— A Taylor expansion of Eq. (8)
shows that its first term becomes dominant when k < N
and N > 1, so we can write [7]

= for chaotic systems.
(PP)g = {287k . (13)
1 for integrable systems.

This expression shows that for small frequencies, the
excitation energy fluctuations exhibit 1/f noise in chaotic
systems and 1/f2 noise in integrable systems. As we see
below, these power laws are also approximately valid
through almost the whole frequency domain, due to par-
tial cancellation of higher order terms. Only near k =
N/2, the so-called Nyquist frequency [5], the effect of
these terms, becomes appreciable.

To test all these theoretical expressions we have com-
pared their predictions to numerical results obtained for
different ensembles and systems. Figure 1 displays the
theoretical values of (P9) for GUE and integrable sys-
tems, as given by the appropriate previous equations,
together with the numerical average values for
500 GUE matrices and 500 Poisson level sequences. In
order to enlarge the high frequency region, where the
numerical results show small deviations from the 1/f¢
power law behavior, an upper right panel is added to the
figure. The theoretical curve describes perfectly the
power laws, characteristic of small and intermediate fre-
quencies, as well as the deviations observed at the highest
frequencies (note that there are no free parameters in the
analytical result).

Poisson

log <P%,(k )>

log(k)

FIG. 1. Theoretical power spectrum of the &, function for
GUE and integrable systems (solid lines), compared to numeri-
cal averages calculated using 500 GUE matrices of dimension
N = 1000 (circles) and 500 Poisson level sequences of length
N = 1000 (triangles).

We have also compared our predictions to the power
spectra of 0, for two physical systems: an atomic nucleus
(chaotic) and a rectangular billiard (integrable).

In the first case, we have performed a shell-model
calculation for 3*Na using an adequate realistic interac-
tion and the shell-model code NATHAN (see [11] and
references therein). The Hamiltonian matrices for differ-
ent angular momenta, parity, and isospin were fully
diagonalized. Then, 25 sets of 256 consecutive high en-
ergy levels of the same quantum numbers J”T were
selected, and the average power spectrum of the &,
function was calculated numerically. Figure 2 shows the
result of this calculation together with the theoretical
values of Eq. (10). An excellent agreement between the

log <P5k>

log(k)

FIG. 2. Numerical average power spectrum of the &, func-
tion for 3*Na, calculated using 25 sets of 256 consecutive levels
from the high level density region, compared to the parameter
free theoretical values (solid line) for GOE.
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FIG. 3. Numerical average power spectrum of §, for a rect-

angular billiard, calculated using 25 sets of 256 consecutive
levels, compared to the parameter free theoretical values (solid
line) for integrable systems.

theoretical and numerical results is obtained through the
whole frequency interval.

As an example of an integrable system we have chosen
a rectangular billiard with sides of length a = +/A and
b= 1/+/A, with A = (/5 + 1)/2; this geometry gives
rise to an irrational ratio a/b = A, and thus there are no
degeneracies in the spectrum. We have calculated the
spectrum and selected 25 sets of 256 consecutive very
high energy levels in order to avoid, as far as possible, the
influence of short periodic orbits. Figure 3 shows the
results for the average power spectrum of §, and our
theoretical values. As in the previous cases, we can see
that the agreement between the theoretical and numerical
results is very good in the whole frequency domain.

In summary, we have derived random matrix theoreti-
cal expressions for the power spectrum of the §, function
both for regular and chaotic quantum systems. These
expressions are universal and do not contain any free
parameter. We have compared our theoretical predictions
with numerical results for RME, a rectangular billiard,
and an atomic nucleus, obtaining excellent agreement for
all these systems. The theory reproduces the power laws
of type 1/f for chaotic systems, and 1/f? for regular

ones, observed in the power spectrum of the excitation
energy fluctuations up to frequencies very close to the
Nyquist limit. Although these results are derived in RMT,
they are also valid for semiclassical systems except in the
low frequency region.

The power spectrum P,‘z of 6, gives direct information
on the spectral form factor K(7), with the advantage that
it can be applied to discrete level spectra. Perhaps the
most important feature of P¢ is that it provides an intrin-
sic characterization of quantum chaos, without any refer-
ence to RMT, and all chaotic quantum systems exhibit
1/f noise, regardless of the system symmetries.
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