PRL 93, 243602 (2004)

PHYSICAL REVIEW

week ending

LETTERS 10 DECEMBER 2004

Unusually Strong Optical Interactions between Particles
in Quasi-One-Dimensional Geometries

Raquel Gomez-Medina and Juan José Saenz

Departamento de Fisica de la Materia Condensada and Instituto “Nicolds Cabrera,” Universidad Autonoma de Madrid,
E-28049 Madrid, Spain
(Received 24 March 2004; published 9 December 2004)

A theoretical analysis of the optically induced interaction between small particles in a quasi-one-
dimensional system is presented. The total reflection of light modes near a geometric resonance leads to
strong radiation pressure on a single particle. The presence of the two particles splits the resonance
leading to a nontrivial oscillating interaction. The existence of stable, optically bound dimers under two
counterpropagating (noncorrelated) light modes is also discussed.
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By fashioning proper optical field gradients it is pos-
sible to trap and manipulate small particles with optical
tweezers [1,2] or create atomic arrays in optical lattices
[3]. Intense optical fields can also induce significant
forces between particles [4,5]. In analogy with atomic
physics, the resonant modes of a single particle play the
role of electronic orbitals [6] and, like their electronic
counterparts, could lead to bonding and antibonding in-
teractions between neighboring particles [7]. Far from the
particle resonances, light forces are, in general, very
small. However, when the fields are confined in quasi-
one-dimensional (Q1D) waveguide structures, the cou-
pling of the scattered dipolar field with the waveguide
modes leads to a resonant state close to the threshold of a
new propagating mode [8]. Just at the resonance, the
effective cross section of a single particle becomes of
the order of the wavelength leading to a enhanced reso-
nant radiation pressure [8,9]. The main purpose of this
work is to show that these geometric resonances lead to
unusual strong optical interactions between particles.

Geometric resonances had been discussed in the con-
text of electronic transport through a QID wire. In the
presence of a single pointlike attractive impurity, the
electronic conductance was shown to present pronounced
asymmetric dips close to the onset of a new propagating
channel [10—13]. Similar geometric resonances appear in
the context of ultracold atomic collisions in confined
geometries [14]: as in the electronic case, the scattering
process between two atoms confined in a Q1D system can
degenerate to a total reflection [14]. As we will see, the
light scattering by two small particles leads to a non-
trivial splitting of the geometric resonance. Interestingly,
the splitting of the resonance does not always correspond
to the expected familiar bonding-antibonding picture of
atomic physics. We will also show that, under the presence
of two counterpropagating (noncorrelated) wave modes,
the interaction potential can be tuned to present a deep
minimum leading to a stable optically bound dimer.

For the sake of simplicity we consider a two-
dimensional xz waveguide. The pointlike particles are
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then represented by two similar cylinders located at 7|, =
(x1,z1) and 7, = (xy, 7o) (lying along the oy axis) with
radius much smaller than the wavelength. An s-polarized
electromagnetic wave is assumed (the electric field par-
allel to the cylinder axis), E"(F) = exp(—iw?) E™(F)ii,.
The transversal confinement define a set of guided modes
with wave numbers k2 = (0 — 02)/c* (0, < w, <...)
and transversal eigenfunctions ¢, (x). For a single mode
waveguide (w; < w < w,) an incoming electric field can
be written as

1
VEi
Each scatterer is characterized by its scattering ampli-
tude in the unbounded free-space 477 f [15]. The total field

E'in the waveguide is given by the incoming field plus the
fields scattered from each particle, E = E™ + >, £, with

Ef() = 4 fEncF)Go(7. 7) + Gy(R. 7)) ()

E(7) = Eo{ 1) exp[iklz]}. (1)

where Ei,.(7;) is the incident field on the i particle and
G = Gy + G,, is the waveguide Green function. G, is the
outgoing unbounded free-space Green function corre-
sponding to waves emerging from the particle and G,
the regular part of the Green function, corresponds to the
waves scattered from the walls [16]. The time averaged
dipolar force on the i particle is given by [17]:

> E()C2 N s />

F;= ﬁm{“'ﬂ-fEinc(ri)VEinc(r)}?ZF[‘ 3

For a single scatterer, the actual field incident on the

particle is given by

Einc(;) = Em(;) + Einc(;1)47Tth(;; ?1) (4)
The multiple scattering processes between the scatterer
and the lateral confinement lead to a renormalized scat-
tering amplitude [11]
N 1 -1
dif = [N— - G,! —iJ{G}) , (5)
4w f
with G, = lim;_; [G(F, 7|) — Go(7, 7,)] [16] and, for a
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single mode waveguide, J{G} = ¢3(x;)/(2k;). The trans-
mission amplitude ¢ and the transmission probability T =
|t|> are simply related to 477 through

=1+ id7fI{GL. (6)

From Eqgs. (3)—(6) we find that the forward force on the
particle is simply given by
&l EpPlk,

Fmax - 2 . (7)
w

F, = Fpu(1 = T) with

Transversal forces are mainly given by polarization for-
ces (i.e., proportional to the field intensity gradient) [8]:
a Fmax

d M
a—xlU(xl)= 2%, a—)ﬁ[ﬂ?{47rf}~¥{G}]- ®)

F,~ —

For weak “attractive” scatterers N{1/(4mf)} > 0 is large
and dominates the renormalized scattering amplitude.
The forward radiation pressure is then very small and
the confining potential U slightly attracts the particle
towards the center of the guide (where J{G} is maxi-
mum). However, approaching the cutoff frequency w,
(i.e., below the threshold of a new propagating mode),
k, = ik, goes to zero. Then, the contribution of the
evanescent mode to H{G,} outweighs all the others and
MG} = ¢3(x1)/(2k,) diverging at the threshold [16].
The precise compensation of these two large terms at
w = w, gives rise to a geometric resonance. The geomet-
ric resonance can be seen as a Feshbach resonance [18]: It
occurs when the energy (frequency) of the incoming wave
is tuned to the energy (frequency) of the geometry-
induced quasi bound state (QBS) [19]. Based on general
arguments [12], the QID transmission resonances are
then expected to exhibit the asymmetric Fano line shape
characteristic of Feshbach-type resonances [18] T(g) o
(g + €)?/(e? + 1). For classical waves, € = (0 — w,)/T
(w, and I" being the frequency and frequency width of the
resonance). As a matter of fact, expanding Eq. (6), we find

(w — w0)2
(0 — wy)* + 2gT (w; — w)’

with ky = k|, g = J{G}/N{1/@mf)} <1, and T =
2(w, — wg)gq, which has the expected Fano shape with
w, = wy + gI" [20]. The forward force obtained through
this approximated expression can be compared (see Fig. 1)
with the exact results for the force on a small dielectric
cylinder inside a waveguide with perfectly conducting
walls and cross length D [8,16].

Let us turn back to the problem with two similar
particles. The self-consistent incident field around each
particle is now given by the sum of three terms: the
incoming field E™ and the backscattered fields from the
walls and from the other particle:

T(w) =

€))

E:nc(?) = Em(?) + 47TfEinc(;i)Gb(?: 71)
+ 477 f Eine(F)G(7, F)). (10)

max

F/IF

FIG. 1 (color online). Normalized total forward force
[F./IF, |=(1—T)] vs w on a single particle (single peak)
and on the two particle system (double peak) at k;L/7 = 7.4.
Dashed and dot-dashed curves corresponds to the approxi-
mated expressions (9) and (13) (with no fitting parameters).
(Top: sketch of the particle-waveguide system. Bottom:
Patterns of the real part of the total electric field at the resonant

frequencies (w_, w ).

Once we know the incident fields, the forces acting on
each particle follow directly from Eq. (3). For frequencies
close to the single-particle resonance w = w, we found
that the lateral confining potential is dominated by the
renormalized scattering amplitude (proportional to
¢3(x;) [8]) being approximately independent on the rela-
tive position of the particles. For simplicity we will then
assume that the particles are confined around the poten-
tial minimum (for a hard-wall waveguide, x; = x, =
D/4). For each particle, the renormalized amplitude is
given by

5 1+ 47fG et
47T i = ~ 2
1 — (47fG;;)

4arf, (11)

with G;; = G;; = G(7;, ;) and the transmission ampli-

tude reads as

t =1+ i{drf, + 47 1,)3{G). (12)

We can now calculate the forward forces acting on each
particle F,; and F,, the total forward force [F, =
Froa(1 = |t]>) = F,; + F_,] and the effective interaction
force between particles Fj, = F,, — F,;. In Fig. 1 we plot
F_ (solid line) versus frequency for the same parameters
as the single-particle system at a fixed distance L between
particles (k,L/7 = 7.4). As we might expect, the overlap
of the scattered fields leads to a splitting of the geometric
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resonance. However, the analysis of the splitting as a
function of the particle distance reveals an unexpected
complex behavior.

In Fig. 2(a) we show a contour plot of the total force
[<(1 — T)]in a frequency distance (w — kL) map (the F,
vs w curve in Fig. 1 corresponds to the vertical line at
kyL/m = 7.4). The force/transmission resonances mani-

fest themselves as oscillating scars above and below the
|

(w, — w)* — 6%)2

single-particle resonance frequency. Interestingly, de-
pending on kL we can find two resonant frequencies,
one resonance or even no resonance at all. In order to
understand this complex behavior, we have analyzed the
splitting phenomena very close to the Fano-Feschbach
resonance. Expanding the renormalized scattering ampli-
tudes near w = w, we find that the transmittance 7 can
be written as

T = = ,
[(w, = @) = ) = x(w; — ©)F + 2¢l (0, — w)*(w; — )

where

8. = 2wy — wple™ 2k,

['=4ry?

w, = W) + 5Lq Sin(le),

n =[1— gsin(2k,L)/2]

Equation (13) provides a qualitative explanation of all the
observed features in the force map [Fig. 2(a)]: For fixed L,
the total force (the transmittance) seems to present two
maxima (two zeros) at o+ = w, * §. At short distances
the splitting («&;) is roughly given by the overlap be-
tween the evanescent scattered fields which play the same
role as the exponentially decaying orbitals in atomic
systems. However, for kL = n# [ie., sin(k;L) =0,
cos(k;L) = *1], interference destroy one of the two max-

=
©
©
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FIG. 2 (color online). (a) Contour plot of the normalized total
forward force (F, = F,, + F,;) and (b) normalized interaction
force between particles (F, = F,, — F,;) in a frequency-
distance (@ — kL) map. Contour lines in (b) correspond to
F1, = 0 separating bonding and antibonding regions. Vertical
lines at k;L/7 = 7.4 and k;L/7 = 4.3 correspond to the F, vs
o curves in Figs. 1 and 3, respectively [circles on the lines in
(b) are at the resonant peaks in (a)].

(13)

5~ 8,06, — 2Tsin(k, L), x = 4gTsin(k, L),

w, =~ wy+ n ' cos(k;L)8, — I'sin(k,L)].

|

ima and the total force presents a single maximum at @ =
wy — (—1)"8;. At larger distances, both resonances dis-
appear whenever exp(—k,L) <2gsin(k;L). For these
relatively large distances the splitting is small and, as
shown in Fig. 1, there is a remarkable quantitative agree-
ment between the approximated result (with no fitting
parameters) and the exact calculation. In general, for w =
w_ the electric fields around the particles shows a sym-
metric pattern while for w = w, it is antisymmetric
(bottom of Fig. 1).

The actual nature of the resonances is obtained from
Fig. 2(b) where we plot the effective interaction force
map, F, vs L. The contour lines define the limit between
“bonding” (Fj, <0) and “antibonding” (F, > 0) re-
gions. In the bonding regions, the total forward force is
focused on particle one leading to an effective ‘“attrac-

0.99 W/, 1
3
F, I
———F, h
—— F=F +F, I
L ~FotE, i A
2 —-— F,=F,-F, I A

= 1 1
~
=
O F——__ =
-1 L
Bonding Antibonding
[ _2s58%e} @50 aune « 00

F— F—
1

FIG. 3 (color online). Normalized forces vs frequency for the
two particles system at k;L/7 = 4.3. The continuous line
represents the total forward force F,. Dotted and dashed lines
correspond to F,; and F,, respectively. Dot-dashed curve
represents the interaction force between particles F,.
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FIG. 4 (color online). Optically induced interaction potential
between two particles at a distance L for three different
frequencies (corresponding to the horizontal lines of Fig. 2).

tion” between particles. In the antibonding regions the
effective repulsion comes from the radiation pressure of
the scattered wave between the two particles: there is a
forward force on particle 2 (¥, > 0) whereas particle 1
is pushed backwards (F,; < 0). This is illustrated in Fig. 3
where we have plotted the different forces F;, Fy,, and
F.vs w for ki L/ = 4.3. When the splitting is dominated
by the evanescent scattered fields, the nature of the reso-
nant peaks corresponds to the familiar bonding-
antibonding picture. However, for larger distances, the
interaction at the resonant frequencies is always attractive
(for example, both peaks in Fig. 1 correspond to bonding
interactions).

The forward forces can be compensated if the wave-
guide is excited by two equivalent counterpropagating
modes. If these two modes are uncorrelated (i.e., mutually
incoherent), the total time average force is simply the sum
of the forces induced by each wave mode. In this case,
there is no net force on the two particle system (F, = 0)
and we can derive a light-induced interaction potential
between the particles, 2(F,, — F,;) = —(3/dL)U»(L).
In Fig. 4 we plot the interaction potential as a function
of the distance L for three different frequencies (corre-
sponding to the three horizontal lines in Fig. 2). In
general, U(L) presents a background oscillating behavior.
For frequencies larger than w, there is an average anti-
bonding interaction while for lower frequencies the par-
ticles attract each other. The effective interaction
potential can then be tuned to present a deep minimum
leading to a stable optically bound dimer.

In summary, we have analyzed the optical interactions
between small particles in a quasi-one-dimensional sys-
tem near a geometric resonance. In contrast with the
forces associated to internal Mie modes, optically in-
duced interactions in QID could be tuned and manipu-
lated by appropriated control of the confining geometry.
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